
Abstract

In this document we are going to prove De Rham theorem, which states
that De Rham and singular cohomology, over a paracompact manifold M , are
isomorphic. Moreover we will prove the explicit form of this isomorphism, given
by integration of forms on singular simplices. This result is going to be proved
using F -injective resolutions and tools from sheaf theory.

1 Useful results

Let M be a paracompact smooth real manifold.

Lemma 1.1. Every fine sheaf on M is soft.

Lemma 1.2. The full subcategory of soft sheaves is Γ(M,−)-injective.

2 Singular Cohomology

For this section consider K to be a PID, M a paracompact manifold and U ⊂ M an
open subset of M . Let us define the continuous singular simplices:

Definition 2.1: Standard p-simplex.
Let N ∋ p ≥ 1. We define the standard p-simplex

∆p :=

{
(a1, . . . , ap) ∈ Rp

∣∣∣∣∣
p∑

i=1

ai ≤ 1 and, ∀ i ∈ {1, . . . , p}, ai ≥ 0

}
. (2.1)

For p = 0 we set ∆0 := {0} the 1-point space, and we call ∆0 the standard 0-simplex.

Definition 2.2: Continuous/differentiable singular p-simplex.
We define a continuous singular simplex σ in U to be a continuous map σ : ∆p → U .

If p ≥ 1 we say that σ is a differentiable singular p-simplex in U iff it can be
extended to a differentiable (C∞) map of a neighborhood of ∆p in Rp into U .

Remark 2.3.
The theory can be developed also for differentiable singular simplices, but it requires
some care we are not willing to give. In general it is exactly the same as for continuous
ones, apart from where noted otherwise. In case you want to develop such theory,
please refer to [War83].

From now on we are going to deal only with continuous singular simplices, hence
we will stop indicating their continuity.

Definition 2.4: Singular p-chains with integer coefficients.

Fixed U
open
⊂ M , we define Sp(U) to be the free abelian group (equivalently the free

Z-module) generated by the singular p-simplices in U . Its elements are called singular
p-chains with integer coefficients, and can be written as finite formal sums, with integer
coefficients, of singular simplices, such as:

c =

n∑
j=1

njσj , (2.2)

where nj ∈ Z \ {0} and σj a singular p-simplex for every 1 ≤ j ≤ n.
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Definition 2.5: Boundary.
We define, for each p ≥ 0 and 0 ≤ i ≤ p+ 1, the collection of maps kpi : ∆p → ∆p+1:

for p = 0,

{
k00(0) := 1
k01(0) := 0

for p ≥ 1,

{
kp0(a1, . . . , ap) :=

(
1−

∑p
j=1 aj , a1, . . . , ap

)
kpi (a1, . . . , ap) := (a1, . . . , ai−1, 0, ai+1, . . . , ap) for 1 ≤ i ≤ p

. (2.3)

Given a singular p-simplex σ in U
open
⊂ M , we define its ith face, for 0 ≤ i ≤ p, to be

the singular (p− 1)-simplex
σi := σ ◦ kp−1

i . (2.4)

We will use the superscript index to denote the face of a singular simplex. Finally we
define the boundary of σ to be the singular (p− 1)-chain

∂σ :=

p∑
j=0

(−1)jσj ∈ Sp−1(U), (2.5)

in which, as stated before, σj denotes the j th face of σ.
Extending the boundary operator ∂ by linearity, we obtain a homomorphism

∂ : Sp(U) → Sp−1(U). (2.6)

More explicitly, the boundary operator acts as follows on a singular p-chain:

∂

 n∑
j=1

ajσj

 :=

n∑
j=1

aj∂σj =

n∑
j=1

p∑
i=0

(−1)iajσ
i
j . (2.7)

Lemma 2.6. kp+1
i ◦ kpj = kp+1

j+1 ◦ kpi for any p ≥ 0 and i ≤ j.

Proof. If p = 0 it can be checked directly (there are only 3 cases). For p ≥ 1 it will be
computed directly. The first term acts as

kp+1
i ◦ kpj (a1, . . . , ap) =


(a1, . . . , ai−1, 0, ai, . . . , aj−1, 0, aj , . . . , ap) if 1 ≤ i < j

(a1, . . . , ai−1, 0, 0, ai, . . . , ap) if 1 ≤ i = j(
1−

∑p
j=1 aj , . . . , aj−1, 0, aj , . . . , ap

)
if 0 = i < j(

0,
∑p

j=1 aj , a1, . . . , ap

)
if 0 = i = j

.

(2.8)
Analogously we can compute that the second term acts as

kp+1
j+1 ◦ kpi (a1, . . . , ap) =


(a1, . . . , ai−1, 0, ai, . . . , aj−1, 0, aj , . . . , ap) if 1 ≤ i < j

(a1, . . . , ai−1, 0, 0, ai, . . . , ap) if 1 ≤ i = j(
1−

∑p
j=1 aj , . . . , aj−1, 0, aj , . . . , ap

)
if 0 = i < j(

0,
∑p

j=1 aj , a1, . . . , ap

)
if 0 = i = j

.

(2.9)
■
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Lemma 2.7. ∂ ◦ ∂ = 0.

Proof. We are gonna prove this result only for singular p simplices, then by linearity
this result will hold for arbitrary singular p-chains. If p = 0, 1 the result is trivial.
Let, now, p ≥ 2 and σ be a singular p-simplex. By definition ∂ acts on σ as

∂σ =

p∑
i=0

(−1)i
(
σ ◦ kp−1

i

)
. (2.10)

Hence we can compute the double boundary as

∂ ◦ ∂σ =

p∑
i=0

p−1∑
j=0

(−1)i+j
(
σ ◦ kp−1

i ◦ kp−2
j

)
. (2.11)

We can divide the sum for i ≤ j and i > j, as

∂ ◦ ∂σ =

p−1∑
j=0

p∑
i=j+1

(−1)i+j
(
σ ◦ kp−1

i ◦ kp−2
j

)
+

p−1∑
j̃=0

j̃∑
ĩ=0

(−1)ĩ+j̃
(
σ ◦ kp−1

ĩ
◦ kp−2

j̃

)
(2.12)

=

p−1∑
j=0

p∑
i=j+1

(−1)i+j
(
σ ◦ kp−1

i ◦ kp−2
j

)
+

p∑
i=1

i−1∑
j=0

(−1)i+j+1
(
σ ◦ kp−1

i ◦ kp−2
j

)
(2.13)

=0, (2.14)

where, in the second sum we put i := j̃+1 and j := ĩ, and we concluded with the last
line since the two sums are over all i, j s.t. i > j and they only differ by a sign. ■

Definition 2.8: Singular p-cochain on U .

Let Sp (U,K), with U
open
⊂ M and K a PID as usual, be the set of functions that map

a singular p-simplex in U into an element of K. An element of Sp (U,K) is called
singular p-cochain on U .

The set Sp (U,K) can be made into a K-module by defining the following addition
and scalar multiplication:

(kf) (σ) := k · f(σ) (2.15)

(f + g) (σ) := f(σ) + g(σ). (2.16)

Also note that each singular p-cochain can be extended into a homomorphism of Sp(U)
into K by linearity. This actually determines an isomorphism of Sp (U,K) into the
K-module of morphisms of Sp(U) into K. We will, hence, identify each element of
Sp(U,K) with the corresponding morphism.

Definition 2.9: Presheaf of singular p-cochains.
We can define the functor S̃p

K : OpopM → Mod (K) as the functor which acts

• on the objects: S̃p
K(U) := Sp (U,K), for any U ∈ OpM ,

• on the morphisms: V
open
⊂ U iff we have U −→ V in OpopM . Sp

K maps this morphism
to ρV,U : Sp (U,K) → Sp (V,K), the function which maps any f ∈ Sp (U,K) to
its restriction to singular p-simplices on V .
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Clearly, for any p ≥ 1 these are presheaves.

Note that these presheaves satisfy S2, but not S1:

S2: Given U := {Ui}i∈I an open covering of U
open
⊂ X and p-cochains fi ∈

S̃p
K(Ui) s.t. fi|Ui∩Uj

= fj |Ui∩Uj
for any i, j ∈ I we can construct f ∈ S̃p

K(U)

s.t. f |Ui
= fi for every i ∈ I. In fact f |Ui

is f acting only on singular p-
simplices in Ui. This, combined with the fact that we are not imposing any
continuity conditions on f means that we can take f to be define as fi when
computed on any singular p-simplex in Ui and any arbitrary value – e.g. 0 –
when computed on a singular p-simplex with range not contained in any Ui.

S1: The last sentence should make clear the fact that the extension is not
unique – i.e. we can map the last singular simplices to any value in K – giving
at least two different extensions for any set of local cochains. We then have
that equality cannot be checked locally.

This shortcoming hints to the fact that we will have to consider the sheafification
of this presheaf in order to prove an isomorphism of cohomologies (spoiler alert: we
are going to use resolutions).

Let’s now lay the ground for the resolution we will construct:

Definition 2.10: Coboundary homomorphism.
One can define the coboundary homomorphism d(U) : Sp (U,K) → Sp+1 (U,K) setting

d(U)f(σ) := f(∂σ), (2.17)

for any f ∈ Sp (U,K) and σ a singular (p+ 1)-simplex with range in U .

Remark 2.11.
Note that, since ∂ ◦ ∂ = 0, also for the coboundary homomorphism, fixed U

open
⊂ M ,

we have d(U) ◦ d(U) = 0. Moreover d yields a morphism of presheaves:

d : S̃p
K → S̃p+1

K . (2.18)

In order to check it we have to show that, for any V
open
⊂ U ∈ OpM , the following

diagram commutes:

Sp (U,K) Sp+1 (U,K)

Sp (V,K) Sp+1 (V,K)

d(U)

ρU,V ρU,V

d(V )

, (2.19)

where, as defined above, d(U) represents the coboundary morphism from Sp (U,K)
and d(V ) the one from Sp (V,K). The diagram clearly commutes, since d commutes
with restriction (the boundary operator is not affected: the range of σ has to be in
the restricted domain).

Definition 2.12: Complex of presheaves of singular cochains.
Consider the following chain of presheaves of singular q-cochains (consider them to
be 0 for every q < 0):

. . . → 0 → S̃0
K

d−→ S̃1
K

d−→ S̃2
K

d−→ . . . . (2.20)
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This is a complex, since we have proved that the coboundary morphism satisfies

d ◦ d = 0. (2.21)

We denote it with S̃•
K and call it the complex of presheaves of singular cochains.

Definition 2.13: Singular cohomology.
We associate, to the global sections of the complex of presheaves of singular cochains,
the classical singular cohomology, i.e.

Hq
∆(M) := Hq(S̃•

K(M)). (2.22)

Let’s now create the corresponding complex of sheaves:

Definition 2.14: Sheaf of singular p-cochains.
We define the sheaf of p-cochains Sp

K :=
(
S̃p
K

)a
the sheafification of the presheaf of

p-cochains.

With the aim of obtaining a Γ(M ;−)-injective resolution for the constant sheaf in
K, we want to prove that the just defined sheaf is fine:

Lemma 2.15. For any p the sheaf Sp
K is fine.

Proof. Recall that M is a paracompact manifold. Hence it admits a locally finite open
cover {Ui}i∈I , with associated partition of unity {φi}i∈I . As proved by Warner (see
[War83] section 5.22) we can choose φi that only assume the values 0 and 1, with
suppφi = Vi ⊂ Ui.

We aim to exhibit a partition of unity for the sheaf Sp
K . Our starting block will be

the family
{
l̃i
}
i∈I

of endomorphisms of the presheaf S̃p
K . Fixed U

open
⊂ M , f ∈ S̃p

K(U)
and σ a singular p-simplex, then these morphisms act as:

l̃i(U)(f)(σ) := φi(σ(0))f(σ). (2.23)

The fact that these morphisms commute with restriction is trivially true, hence
{
l̃i
}
i∈I

is really a family of morphisms of presheaves.
We can, now, consider {li}i∈i, the family of morphisms of sheaves associated by

sheafification. We want to prove that this is a partition of unity for the sheaf Sp
K :

• By definition supp li := {m ∈ M | (li)m ̸= 0}. We also know that the stalk of
the sheafification is isomorphic to the stalk of the original presheaf, so we will
check the support of li by checking the behaviour of l̃i at the level of stalks. If
m /∈ V i, then ∃Um an open neighborhood of m s.t. Um∩V i = ∅. Since V i is the
support of φi we desume that (l̃i)mfm = 0 for any fm ∈ (S̃p

K)m. It immediately
follows that supp li ⊂ V i ⊂ Ui;

• The morphism
∑

i∈I li(U) sends s ∈ Sp
K(U) to∑

i∈I

li(U)(s) : m 7→
∑
i∈I

(li)ms(m). (2.24)

Clearly the last term is exactly s(m) by definition of
{
l̃i
}
i∈X

. This shows that∑
i∈I

li(U) = idSp
K
, (2.25)

hence that {li}i∈i is a partition of unity for Sp
K . ■
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Definition 2.16: Complex of sheaves of singular cochains.
Let us denote (with a little abuse of notation) by d the image of the coboundary
morphism by the sheafification functor, da. Then, associated with 2.12, we have the
complex of sheaves of singular cochains

. . . → 0 → S0
K

d−→ S1
K

d−→ S2
K

d−→ . . . . (2.26)

Remark 2.17.
This is going to be the starting block for the resolution of the constant sheaf KM .
Our aim in the next few lemmas is, in fact, to prove that

0 → KM → S0
K

d−→ S1
K

d−→ S2
K

d−→ . . . , (2.27)

is exact.

Remark 2.18.
Since the functor (−)a is exact we can check exactness of (2.27) at KM and at S0

K by
checking the exactness of

0 → KM → S̃0
K

d−→ S̃1
K . (2.28)

• It is exact atKM iff the morphism from the constant sheaf with values inK in S̃0
K

is mono. It is mono iff for any U open in M the associated morphism of modules
is injective. This map just sends a locally constant function f ∈ KM (U) to its
associated locally constant singular 0-cochain (recall that a singular 0-simplex
is just the data of a point in the manifold), hence it’s clearly injective.

• It is exact at S̃0
K iff ker d contains only the locally constant 0-cochains. This is

the case, since by definition

df(σ) := f(∂σ) = f(1)− f(0). (2.29)

Since any singular 1-chain is by definition a continuous path we desume that
f ∈ ker d iff f is constant on every connected subset of M , i.e. iff it is locally
constant.

Remark 2.19.
For p ≥ 1 we are going to check exactenss at the level of stalks. Let’s fix p and m ∈ M ,
we want to check exactness of

(Sp−1
K )m

dm−−→ (Sp
K)m

dm−−→ (Sp+1
K )m (2.30)

at (Sp
K)m. We have already proved that d◦d = 0, hence also dm ◦dm = 0. This means

we only have to prove that, given f ∈ (Sp
K)m s.t. dmf = 0, there exist g ∈ (Sp−1

K )m
for which f = dg.

Since we are at the level of stalks we can consider the stalks of the presheaves:
(S̃p

K)m. Here dmf = 0 iff there exists a small enough neighborhood of m s.t. d(f |U ) =
0. Similarly f = dg iff there exists a small enough neighborhood of m on which
d(g|U ) = f |U .

Remark 2.20.
Moved by the above remark we are going to concentrate on an arbitrarily small neigh-
borhood U of m. Since we are in a manifold M , which is locally euclidean, we can
assume U to be the open unit ball in Rd, where d is the dimension of M .
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We are not going to prove exactness, but the stronger fact that the following
complex

0 → S0(U,K)
d−→ S1(U,K)

d−→ S2(U,K)
d−→ . . . (2.31)

is homotopic to zero. In other words we have to construct a family of morphisms

hp : Sp(U,K) → Sp−1(U,K), (2.32)

for all p ≥ 1, s.t.
d ◦ hp + hp+1 ◦ d = idSp(U,K). (2.33)

In fact, if we take f ∈ Sp (U,K) s.t. df = 0 then, by the above formula, we get

f = id(f) = (d ◦ hp + hp+1 ◦ d)f = d ◦ hp(f). (2.34)

If we call g := hp(f), then we obtain the desired result: the complex is exact.

As just stated, for the following theorems,

U := B =
{
x ∈ Rd

∣∣ ∥x∥ < 1
}
, (2.35)

where d is the dimension of M , i.e. the generic simply connected open neighborhood
in the manifold M .

Definition 2.21.
Let f ∈ Sp

K(U) and σ a singular (p − 1)-simplex in U . We define hp : Sp(U,K) →
Sp−1(U,K) by

hp(f)(σ) := f
(
h̃p(σ)

)
, (2.36)

where h̃p(σ) is the p-simplex that maps the origin, in ∆p, to the origin, in U , and, for
any (a1, . . . , ap) ̸= 0, defined by

h̃p(σ)(a1, . . . , ap) :=

 p∑
j=1

aj

σ

(
a2∑p
j=1 aj

, . . . ,
ap∑p
j=1 aj

)
. (2.37)

In what follows we will consider h̃p to be the linear extension of the above definition

to the p-cochains, i.e. to h̃p : Sp−1(U) → Sp(U).

Remark 2.22.
With this definition we are only granting continuity to h̃p(σ), but not differentiability.
This is one of the few points in which the theories for continuous and differentiable
simplices diverge.

Lemma 2.23. ∂ ◦ h̃p+1 + h̃p ◦ ∂ = id.

Proof. It is a simple – and tedious – computation: let σ be a singular p-simplex.

(
∂ ◦ h̃p+1 + h̃p ◦ ∂

)
(σ) =

p+1∑
i=0

(−1)i
(
h̃p+1(σ)

)i
+

p∑
i=0

(−1)i h̃p(σ
i) (2.38)

=
(
h̃p+1(σ)

)0
+

p+1∑
i=1

(−1)i
{(

h̃p+1(σ)
)i

− h̃p(σ
i−1)

}
.

(2.39)
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Let’s now compute the individual terms.
Let i > 1, by definition the first summand is(

h̃p+1(σ)
)i

(a1, . . . , ap) = h̃p+1(σ) ◦ kpi (a1, . . . , ap) (2.40)

= h̃p+1(σ)(a1, . . . , ai−1, 0, ai+1, . . . , ap) (2.41)

=

 p∑
j=1

aj

σ

(
a2∑p
j=1 aj

, . . . ,
ai−1∑p
j=1 aj

, 0,
ai+1∑p
j=1 aj

, . . . ,
ap∑p
j=1 aj

)
. (2.42)

Again, by definition, the second summand is(
h̃p(σ

i−1)
)
(a1, . . . , ap) = h̃p

(
σ ◦ kp−1

i−1

)
(a1, . . . , ap) (2.43)

=

 p∑
j=1

aj

(σ ◦ kp−1
i−1

)( a2∑p
j=1 aj

, . . . ,
ap∑p
j=1 aj

)
(2.44)

=

 p∑
j=1

aj

σ

(
a2∑p
j=1 aj

, . . . ,
ai−1∑p
j=1 aj

, 0,
ai+1∑p
j=1 aj

, . . . ,
ap∑p
j=1 aj

)
. (2.45)

Let, now, i = 1. Still by definition, the first summand is(
h̃p+1(σ)

)1
(a1, . . . , ap) = h̃p+1(σ) ◦ kp1(a1, . . . , ap) (2.46)

= h̃p+1(σ)(0, a1, . . . , ap) (2.47)

=

 p∑
j=1

aj

σ

(
a1∑p
j=1 aj

, . . . ,
ap∑p
j=1 aj

)
. (2.48)

The second summand, instead, is(
h̃p(σ

0)
)
(a1, . . . , ap) = h̃p

(
σ ◦ kp−1

0

)
(a1, . . . , ap) (2.49)

=

 p∑
j=1

aj

(σ ◦ kp−1
0

)( a2∑p
j=1 aj

, . . . ,
ap∑p
j=1 aj

)
(2.50)

=

 p∑
j=1

aj

σ

(
a1∑p
j=1 aj

, . . . ,
ap∑p
j=1 aj

)
, (2.51)

where, in the last equality, we used

1−
∑p

j=2 aj∑p
j=1 aj

=

∑p
j=1 aj −

∑p
j=2 aj∑p

j=1 aj
=

a1∑p
j=1 aj

. (2.52)

All of the abore terms are equal and, in (2.39), they appear with different sign. This
allows us to simplify the first equality to:(

∂ ◦ h̃p+1 + h̃p ◦ ∂
)
(σ) =

(
h̃p+1(σ)

)0
. (2.53)
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Let’s compute this last term:(
h̃p+1(σ)

)0
(a1, . . . , ap) = h̃p+1(σ) ◦ kp0(a1, . . . , ap) (2.54)

= h̃p+1(σ)(1−
p∑

j=1

aj , a1, . . . , ap) (2.55)

=

1−
p∑

j=1

aj +

p∑
j=1

aj

σ (a1, . . . , ap) (2.56)

= σ(a1, . . . , ap). (2.57)

We, then, have the desired result! ■

Lemma 2.24. d ◦ hp + hp+1 ◦ d = id.

Proof. From lemma 2.23 we know that

∂ ◦ h̃p+1 + h̃p ◦ ∂ = id. (2.58)

In order to use this result to prove our statement we are gonna compute the action of
d ◦ hp(f) + hp+1 ◦ d(f), for f ∈ Sp(U,M), on an arbitrary p-chain σ:

(d ◦ hp + hp+1 ◦ d) f(σ) = d ◦ hpf(σ) + hp+1 ◦ df(σ) (2.59)

= hpf(∂σ) + df(h̃p+1σ) (2.60)

= f
(
h̃p(∂σ)

)
+ f

(
∂(h̃p+1σ)

)
(2.61)

= f
(
h̃p(∂σ) + ∂(h̃p+1σ)

)
(2.62)

= f(σ). (2.63)

■

Remark 2.25.
As of this point we have checked everything we needed to in order to say that

0 → KM → S0
K

d−→ S1
K

d−→ S2
K

d−→ . . . (2.64)

is a Γ(M ;−)-injective resolution for KM . In fact it is exact, by the above lemmas,
and it is Γ(M ;−)-injective, by 1.2, since each term is fine.

Our next task is to prove that the cohomology of the global sections of this resol-
ution coincides with the singular cohomolgy on our manifold. This will be a lengthy
construction, for which we’ll outline the most interesting parts, leaving the lengthy
computations to [War83].

Proposition 2.26. Let P ∈ PSh (kM ) be a presheaf that satisfies S2. Ler S := P a

its sheafification and (P (M))0 the K-module defined by

(P (M))0 := {s ∈ P (M) | sm = 0 ∀m ∈ M} . (2.65)

Then the sequence of modules

0 → (P (M))0 → P (M)
θ−→ S(M) → 0 (2.66)

is exact.

9



Proof. We need to check exactness at each point in the sequence.

• At (P (M))0 is clear, since it is a submodule of P (M) and the inclusion map is
injective.

• At P (M) we need to check that ker θ = (P (M))0. Let s ∈ P (M), then

s 7→
{
M

θ(s)−−→
∐

m∈M

Pm

}
, (2.67)

where θ(s)(m) = sm ∈ Pm. It is clear that s ∈ ker θ iff sm = 0 for every m ∈ M ,
i.e. iff s ∈ (P (M))0.

• At S(M) we need to check that θ is surjective. We will do it explicitly: given
t ∈ S(M) we will construct s ∈ P (M) s.t. t = θ(s). Recall that an element t in
S(M) is of the form

M
t−→
∐

m∈M

Pm s.t. t(m) ∈ Pm ∀m ∈ M (2.68)

satisfying ∀m ∈ M ∃Vm

open
⊂ M with m ∈ Vm and ∃ s ∈ P (Vm) s.t. sx =

t(x) ∀x ∈ Vm. {Vm}m∈M clearly is an open cover of M , which is paracompact.
We can extract a locally finite open refinement {Uα}α∈A in which, for every
α ∈ A, there exists sα ∈ P (Uα) s.t. θ(sα) = t|Uα

. Let, now, {Vα}α∈A be

a refinement s.t. V α ⊂ Uα. Let Im be the collection of indeces α for which
m ∈ V α and Wm a neighborhood of m that satisfies:

– Wm ∩ V α = ∅ if α /∈ Im,

– Wm ⊂ ∩α∈ImUα, which is open and nonempty,

– sα|Wm
= sβ |Wm

for any α, β ∈ Im, possible by the definition of stalk and
sheafification.

Let sm ∈ Wm be the common image of the third point.

Consider, now, n,m ∈ U s.t. Wm ∩Wn ̸= ∅ and p ∈ Wm ∩Wn. From the first
condition we know that Ip ⊂ In ∩ Im. Let α ∈ Ip. By the third condition we
have

sm = sα|Wm
and sα|Wn

= sn. (2.69)

This imples
sm|Wm∩Wn

= sα|Wm∩Wn
= sn|Wm∩Wn

. (2.70)

We have just constructed a family {sm}m∈U of sections of the presheaf that
satisfy condition S2. We can hence patch them together to obtain an element
s ∈ P (M) s.t.

s|Wm
= sm (2.71)

for any m. Then, by definition, θ(s) = t. ■

Theorem 2.27. Let M be a paracompact manifold, K a PID, then for every q ≥ 0

Hq
∆(M) ≃ Hq (S•

K(M)) . (2.72)
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Proof. Recall that
Hq

∆(M) = Hq(S̃•
K(M)). (2.73)

This means that we have to prove

Hq(S̃•
K(M)) ≃ Hq (S•

K(M)) . (2.74)

By proposition 2.26, applied to the presheaf S̃p
K , we have the following short exact

sequence of K-modules

0 → (S̃p
K(M))0 → S̃p

K(M)
θ−→ Sp

K(M), (2.75)

for any p ∈ N. It immediately follows that the associated sequence of complexes

0 → (S̃•
K(M))0 → S̃•

K(M)
θ•

−→ S•
K(M) (2.76)

is exact. As usual, to this exact sequence of complexes we can associate the long
cohomology sequence

· · · → Hq
(
(S̃•

K(M))0
)
→ Hq

(
S̃•
K(M)

) θq

−→ Hq
(
S•
K(M)

) δq−→ Hq+1
(
(S̃•

K(M))0
)
→ . . .
(2.77)

If we managed to prove that, for every q, Hq
(
(S̃•

K(M))0
)
= 0, then θq would be both

mono and epi, hence (we are working in the category of K-modules) an iso.
Let’s now check it explicitly:

q < 0: For q < 0 (S̃q
K(M))0 = 0, then also the associated cohomology module

is,

q = 0: Note that, for q = 0, S̃0
K is actually a sheaf. In fact singular 0-simplices

in M are just the assignment of a point in M . It follows that a singular 0-
cochain on M is just a function from M to K. If it is determined in an open
cover of M , then it is uniquely determined, recall that S̃0

K satisfies S1. This

means that any element of (S̃0
K(M))0 is the zero element of S̃0

K(M).

q > 0: We won’t explicitly give the whole construction for this case, but we will
reference a technical lemma, found in [War83]. Let U = {Ui}i∈I be an open
cover of M . We define S•

U(M,K) to be the set of singular cochains f with
values in K, defined only on U-small singular simplices. We say that a singular
simplex is U-small iff its range is contained in Ui for one Ui ∈ U. Clearly to
any element f ∈ Sp(M,K) one can associate an element in Sp

U(M,K) given by
the restriction of f to U-small singular p-simplices only. This association gives
rise to a surjective morphism of cochains

jU : S•(M,K) → S•
U(M,K). (2.78)

Denoting with K•
U the kernel of this morphism, we get a short exact sequence

of complexes

0 → K•
U −→ S•(M,K)

jU−→ S•
U(M,K) → 0. (2.79)

From this we obtain a corresponding long exact cohomology sequence

· · · → Hq(K•
U)

iqU−→ Hq(S•(M,K))
jqU−→ Hq(S•

U(M,K))
δq−→ Hq+1(K•

U) → . . . .
(2.80)
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We want to prove that the map jqU induced in the cohomology sequence is an
iso for any q. If it were the case, it would follow that, for every q

Hq(K•
U) = 0. (2.81)

In fact, since jqU induces an iso, it means that ker δq = Hq(S•(M,K)) and
im δq = 0. But im δq = ker iqU, i.e. this last map is a mono. Analogously it can
be proved that im iqU = 0, hence that Hq(K•

U) = 0.

Following [War83] this statement is proved using the results of lemma 2.28,
below. In fact, by (2.84), jU induces surjections of the cohomology modules.
By (2.85) k◦jU induces the identity on cohomology, which means that jU must
induce injections. Putting it all together jU induces isomorphisms.

With this fact we want to prove that Hq
(
(S̃•

K(M))0
)
= 0. Consider f ∈

(S̃q
K(M))0 s.t. df = 0. By definition of (S̃q

K(M))0 we know that fm = 0 for
every m ∈ M , hence that for any m there exist an open neighborhood Um of
m s.t. f maps every singular q-chain with range in Um to 0. This means that
there exists an open cover U of U consisting of sufficiently small sets, for which
f ∈ Kq

U. From (2.81) we know that ∃ g ∈ Kq−1
U ⊂ (S̃q−1

K (M))0 s.t. f = dg, i.e.

Hq
(
(S̃•

K(M))0
)
= 0. (2.82)

■

Lemma 2.28. Let M be a paracompact manifold,

jU : S•(m,K) → S•
U(M,K) (2.83)

be the inclusion map defined in the above proof. Then there exists a map

k : S•
U(M,K) → S•(M,K) (2.84)

s.t. jU ◦ k = id and homotopy operators hp : Sp(M,K) → Sp−1(M,K) s.t.

hp+1 ◦ d+ d ◦ hp = id− kp ◦ jp. (2.85)

The proof for this lemma consists in explicitly constructing these maps. It is rather
long and boring. Also we have used almost the same notation as [War83], so it can
be checked there – in section 5.32 – without any issue.

Now, before moving onto the main result of this work, let’s define a last concept:

Definition 2.29: Integration of forms over singular simplices.
Let M be a differentiable manifold, σ a differentiable singular p-simplex in U and ω a

continuous p-form also defined on U
open
⊂ M .

• If p = 0 σ is just the data of a point, σ(0), in U and ω just a continuous
(differentiable) function. We define the integral of ω over σ to be∫

σ

ω := ω(σ(0)). (2.86)

• If p ≥ 1 σ extends to a smooth map from a neighborhood of ∆p into U . This
implies that the pullaback of ω is defined in a neighborhood of ∆p. We can then
compute its integral on the p-simplex. From this we define the integral of ω over
σ to be ∫

σ

ω :=

∫
∆p

σ∗(ω). (2.87)
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We linearly extend those definitions to chains: let c =
∑

i aiσi, then∫
c

ω :=
∑
i

ai

∫
σi

ω. (2.88)

Let’s now state (without proving it) a famous theorem that links the exterior
differential for forms, with the boundary operator for simplices.

Theorem 2.30 (Stokes’ theorem). Let M be a differentiable manifold, U
open
⊂ M , c

a p-chain in U , with p ≥ 1, and ω be a smooth (p− 1)-form, still defined on U . Then∫
∂c

ω =

∫
c

dω. (2.89)

If you are interested in the proof you can find it in [War83, §4.7].

Remark 2.31.
Let us define, for p ≥ 0, the following homomorphism

kp : Ωp(U) → Sp(U,R) (2.90)

by setting, for ω ∈ Ωp(U) and σ a differentiable singular p-simplex,

kp(ω)(σ) :=

∫
σ

ω. (2.91)

Then Stokes’ theorem makes this a morphism of complexes

k• : Ω•(U) → S̃•
R(U). (2.92)

We, in fact, need to check the commutativity of the following diagram

Ωp(U) Ωp+1(U)

Sp(U,R) Sp+1(U,R)

d

kp kp+1

d

, (2.93)

i.e. that kp+1 ◦ d = d ◦ kp. Let σ and ω be as above, then

(d ◦ kp)(ω)(σ) = kp(ω)(∂σ) =

∫
∂σ

ω =

∫
σ

dω (2.94)

= kp+1(dω)(σ) = (kp+1 ◦ d)(ω)(σ). (2.95)

This, in turn, gives a morphism of the respective cohomologies:

kq : Hq(Ω•(U)) → Hq(S•(U,R)), (2.96)

called the de Rham homomorphism. Moreover, since this family of morphisms clearly
commutes with restrictions, it also induces a family of morphisms of presheaves:

kp : Ωp → S̃p
R. (2.97)

Which, as before, gives a morphism of complexes of presheaves

k• : Ω• → S̃•
R. (2.98)
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We are finally ready to state and prove our final result:

Theorem 2.32 (De Rham). Let M be a smooth paracompact manifold. Then, for
every q, there exists an isomorphism Hq

DR(M) ≃ Hq
∆(M). Moreover this isomorphism

is given by integration of forms on singular chains.

Proof. When taking the PID K = R to be the field of real numbers, we have con-
structed two Γ(M,−)-injective resolutions for the sheaf of constant functions in R:

0 → RM → Ω0 d−→ Ω1 d−→ Ω2 d−→ . . . , (2.99)

and
0 → RM → S0

R
d−→ S1

R
d−→ S2

R
d−→ . . . . (2.100)

Moreover we know that Mod (RM ) has enough injectives and Γ(M,−) is left exact. It
follows that we can compute the q-th right derived functor of Γ(M,−) by computing
the (q − 1)-th cohomology of these two sequences. As a consequence we have the
following isomorphism

Hq
DR(M) ≃ Hq(S•

R(M)). (2.101)

By theorem 2.27 we know that Hq
∆(M) ≃ Hq (S•

R(M)), which gives the desired iso-
morphism

Hq
DR(M) ≃ Hq

∆(M). (2.102)

We are only left to prove that this isomorphism is the above defined de Rham iso-
morphism. In fact it gives rise to the following morphism of complexes

0 RM Ω0 Ω1 . . .

0 RM S̃0
R S̃1

R . . .

id

d

k0

d

k1

d d

. (2.103)

This, in turn, by sheafification becomes

0 RM Ω•

0 RM S•
R

id (k•)a . (2.104)

Since both of those are Γ(M,−)-injective resolutions, (k•)a induces a quasi isomorph-
ism, i.e. isomoprhisms at the level of cohomologies, between the following complexes

0 RM Ω0(M) Ω1(M) . . .

0 RM S0
R(M) S1

R(M) . . .

id

d

(k0)a

d

(k1)a

d d

. (2.105)

Moreover we have proved that F -injective resolutions differ by a unique isomorph-
ism, at the level of cohomology, hence the canonical isomorphism in equation (2.101)
corresponds with the one induced by (k•)a. This, in turn, means that the following
commutative diagram

Ω•(M)

S̃•
R(M) S•

R(M)

k• (k•)a

θ

, (2.106)
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where θ is the natural morphism F
θ−→ F a, gives rise to the following commutative

diagram of cohomologies

H•
DR(M)

H•
∆(M) H•(S•

R(M))

k• ∼

∼

. (2.107)

Since the other two are isomorphisms, also k• is. Moreover it is the canonical (and
unique) one, we have found before. ■
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