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Winter kept us warm, covering
Earth in forgetful snow, feeding

A little life with dried tubers.
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Introduction
In his renowned paper, [Tat67], John Tate proved a very explicit Hodge-like decomposition of
the Tate module of a Barsotti-Tate group, when tensored with Cp. In particular, when work-
ing over abelian schemes, this granted a "Hodge-Tate" decomposition of the étale cohomology
with coefficients inQp. It was this paper which started the development of the field that is now
known as p-adic Hodge theory, following the push from Tate to find analogous decompositions
for the étale cohomology tensored with Cp for schemes admitting a proper and smooth model
over a ring of integers of some local field K . This result was achieved by Jean-Marc Fontaine
employing his so called period rings, which allowed him to go even further and obtain finer res-
ults in the study of cohomology theories. In particular, when dealing with a variety X overK ,
admitting a proper smooth model over OK , tensoring with the period ring Bcris grants an iso-
morphism between étale and crystalline cohomology of the special fiber. In the case of abelian
varieties, the first étale cohomology group is just the dual of the Tate module of its associated
Barsotti-Tate group, whereas crystalline cohomology is represented by the Dieudonné module
of the associated Barsotti-Tate group. The aim of this thesis is to prove a crystalline compar-
ison theorem which grants an isomorphism between the objects we have just mentioned, after
tensoring with the period ring Bcris. To achieve this goal we will introduce the basic language
of group schemes, which will allow the definition of p-divisible groups, also called Barsotti-Tate
groups. The notion of sheaves on sites will be also discussed in order to give some extra tools to
work with Barsotti-Tate groups. We will define the concept of divided powers with the aim of
defining exponentials, with which we will introduce the crystalline site and crystals on this site.
We will then approach the theory of universal extensions which allows to associate some crys-
tals to Barsotti-Tate groups, which provide a generalization of the construction of the Dieudonné
module. These, together with the theory of deformation of Grothendieck-Messing, will be used
to introduce a classification of p-divisible groups over OK due to Kisin and Breuil. Then, after
spending some time to introduce the most relevant period rings for the aim of this work, we will
use the above-mentioned results to construct and study the desired comparisonmorphism, finally
proving that it is indeed an isomorphism.
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Web version
This version of myMaster’s thesis is distributed on the web via github and gitlab. I have tagged it
as v1.1, meaning that it is the first revision of this document since my defence. I am not planning
to update this document any further, but I might still make some corrections. In particular, if
you find any errors or typos, please send an email to apanontin@tutanota.com. Moreover you
can check at https://github.com/andreapanontin/MastersThesis or, equivalently, at
https://gitlab.com/andreapanontin/MastersThesis if there is an updated version.

Notation and conventions
Each time we will use the letter p it is going to denote a prime number. For convenience sake we
can fix it here once and for all. With this inmindwewill denote byFq the fieldwith q elements, by
Z the ring of integers and byQp and Zp respectively the field and ring of p-adic numbers. Then,
for an extensionK/Qp, we will denote byOK the ring of integers ofK and byK0 the maximal
unramified subextension ofK/Qp.

With regards to algebraic geometry: for a morphism of schemes f : X → Y , we will denote
by f# : OY → f∗OX the associatedmorphism between structure sheaves and, given y := f(x),
by f#y : OY,y → OX,x the induced morphism at the level of stalks. Moreover we will denote by
mx the maximal ideal of the local ring OX,x and by κ(x) := OX,x/mx the residue field at x.
Finally we will say that a topological space is quasi compact iff every open cover admits a finite
subcover, whereas we will call it compact iff it is also Hausdorff.

With respect to category theory: we will not worry about universes. More precisely we will
tacitly assume a universeU has been chosen and we will restrict to categories whose objects lie in
U. Wewill denote categories using a sans serif font and, given a categoryC, we will denote byCop

its opposite category. In particular we will use the following notations: Sch/S for the category
of schemes over a fixed scheme S, Gp for that of groups, Ab for that of abelian groups, Top for
that of topological spaces, and Sets for that of sets. Moreover, by ring or algebra, we will mean
one which is commutative and with unity. Finally we will often use the shorterX ∈ C to mean
thatX is an object of the category C, i.e. thatX ∈ Ob (C).
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1 Grothendieck topologies
The aim of this section is to introduce the concept of Grothendieck topology on a category, in
order to describe sheaves on such category. The main idea behind this construction is that one
can reduce the definition of open coverings to a few formal axioms, translating inclusions with
certain families of arrows in a category and intersections with fibered products.

Remark 1.1 (Open subsets of a topological space). LetX be a topological space. One can define
the category Op(X) of open subsets ofX , whose objects are just open subsets U ⊂ X . Arrows
in this category, moreover, are given by:

HomOp(X) (U, V ) =

{
{∗} if U ⊂ V
∅ otherwise.

This is the motivating example for the following constructions. In fact all arrows inOp(X) cor-
respond to inclusions and fibered products correspond to intersections.

Definition 1.2: Sites.
Let C be a category. A pretopology on C is the assignment, to each object U ∈ C, of a collec-
tion of sets of arrows {Ui → U}i∈I , called coverings ofU , such that the following conditions are
satisfied:

1. Given an isomorphism V
∼−→ U , the set {V → U} is a covering.

2. Given a covering {Ui → U}i∈I of U and a morphism V → U , then the fibered products
{Ui ×U V }i∈I exist and the set of projections {Ui ×U V → V }i∈I is a covering of V .

3. Given a covering {Ui → U}i∈I and, for each index i ∈ I , a covering {Uij → Ui}j∈Ji
of

Ui, the set of composite morphisms {Uij → U}i∈I,j∈Ji
is a covering of U .

A category with a Grothendieck pretopology is called a site.

Remark 1.3. From properties 2 and 3 above it follows that, given two coverings of the same
object {Ui → U}i∈I and {Vj → U}j∈J , also {Ui ×U Vj → U}(i,j)∈I×J is a covering of U .

Before moving on to some examples, let’s introduce a concept which plays an important role in
the definition of some important pretopologies.

Definition 1.4: Jointly surjective family of morphisms.
For C = Sets or C = Sch/S, for some scheme S, we will say that a family of morphisms
{Ui → U}i∈I is jointly surjective iff the set-theoretic union of the images is U .

Let’s now give some examples.

Example 1.5.

1. The site of a topological space. LetX be a topological space, andOp(X) denote the category
of open subsets of X . Then, to each U ∈ Op(X), we associate the family of all open
coverings of U . Recalling that, given two open subsets U1 ↪→ U and U2 ↪→ U , their
fibered product is just their intersection, i.e. U1 ×U U2 = U1 ∩U2, one easily checks that
this defines a pretopology onOp(X).

2. The global classical topology onTop. GivenU ∈ Top, its coverings are all families of jointly
surjective collections of open embeddings Ui ↪→ U . Here open embedding means open,
continuous, injective map and not only the set theoretic inclusion of a subspace.
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Let’s now give a couple of examples on Sch/S, for a fixed scheme S.

3. The global Zariski topology. A covering {Ui → U}i∈I is a jointly surjective collection of
open embeddings.

4. The global étale topology. A covering {Ui → U}i∈I is a jointly surjective collection of étale
maps.

5. The fppf topology. A covering {Ui → U}i∈I is a jointly surjective collection of flat maps
locally of finite presentation. The acronym fppf stands for "fidèlement plat et de présenta-
tion finie".

Proposition 1.6 ([Vis04, §2.3.2]). Let f : X → Y be a surjective morphism of schemes. The following
are equivalent.

1. Every quasi-compact open subset of Y is the image of a quasi-compact open subset ofX .

2. There exists a covering {Vi}i∈I of Y by open affine subschemes, such that each Vi is the image
of a quasi-compact open subset ofX .

3. Given a point x ∈ X , there exists an open neighbourhoodU of x inX , such that the image f(U)
is open inY and the restriction f |U is a quasi-compact morphism of schemes, i.e. the inverse image
of any quasi-compact open subset of f(U) is quasi-compact in U .

4. Given a point x ∈ X , there exists an open neighbourhoodU of x inX such that the image f(U)
is open and affine in Y .

Definition 1.7: fpqc morphism.
An fpqc morphism of schemes is a faithfully flat morphism that satisfies the equivalent conditions
of proposition 1.6. The acronym fpqc stands for "fidèlement plat et quasi-compact".

Remark 1.8 (fpqc topology). It can be shown, see [Vis04, §2.3.2], that on Sch/S, the data of
coverings {Ui → U}i∈I , for each U ∈ Sch/S, such that the induced morphism ⨿iUi → U is
fpqc, is a pretopology on Sch/S. This pretopology is called the fpqc topology.

Let’s now investigate the relations between different topologies:

Definition 1.9: Refinement of a covering and subordinate pretopologies.

1. Let C be a category and {Ui → U}i∈I a set of arrows in C. A refinement of {Ui → U}i∈I

is another set of arrows {Va → U}a∈A, such that, for all a ∈ A, there is some i ∈ I such
that Va → U factors through Ui → U .

2. Let now τ and τ ′ be two pretopologies on C. We say that τ ′ is subordinate to τ iff every
covering in τ ′ has a refinement which is a covering in τ .

The topologies we just introduced are in strong relation between them. In fact each is subordinate
to the one we defined afterwards:

Remark 1.10 ([Stacks, Chapter 020K]).
1. Any Zariski covering is an étale covering, [Stacks, Lemma 0216]. Hence the Zariski topo-

logy is subordinate to the étale one.

2. Any étale covering is an fppf covering, [Stacks, Lemma 021N]. Hence the étale topology is
subordinate to the fppf one.

3. Any fppf covering is an fpqc covering, [Stacks, Lemma 022C]. Hence the fppf topology is
subordinate to the fpqc one.
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1.1 Sheaves
The definition of sheaves on a topological space only depends on the datum of possible open
coverings for a givenobject of the categoryOp(X). Then the introductionof pretopologies allows
one to define sheaves on sites.

Definition 1.11: Presheaves.
Let C be any category. A presheaf on C is just a contravariant functor with values in sets:

F : Cop Sets.

Moreover we define the category of presheaves on C, denoted by PSh(C) as the category whose
objects are presheaves on C and morphisms are natural transformations of functors.

Definition 1.12: Sheaves.
Let C be a site, i.e. a category given with a pretopology. Let F ∈ PSh(C), we say that

1. F is separated iff, given a covering {Ui → U}i∈I and two sections a, b ∈ F (U) whose
pullbacks to each F (Ui) coincide, then a = b;

2. F is a sheaf iff it satisfies the following condition. Consider any U ∈ C, any covering
{Ui → U}i∈I ofU inC and any family of sections {ai}i∈I such that ai ∈ F (Ui). Denote

pri1,i2k : Ui1 ×U Ui2 → Uik

the projection on the kth component. Assume that, for all i, j, (pri,j1 )∗ai = (pri,j2 )∗aj ∈
F (Ui ×U Uj) then there exists a unique section a ∈ F (U)whose pullback to F (Ui) is ai
for all i ∈ I .

Moreover we denote by Sh(C) the full subcategory of PSh(C) of sheaves on C.

Remark 1.13. Notice that any sheaf on C is also a separated presheaf.

Remark 1.14. Let’s give an equivalent definition of sheaf, for a presheaf F on a site C. Choose
U ∈ C and a covering {Ui → U}i∈I . We denote by F → Πi∈IF (Ui) the map induced by the
restriction morphisms F (U)→ F (Ui). Then we define

pr∗1 :
∏

i∈I F (Ui)
∏

i,j∈I×I F (Ui ×U Uj)

as the map sending (ai) ∈ ΠiF (Ui) to pr∗1(ai) ∈ Πi,jF (Ui ×U Uj), whose component in
F (Ui ×U Uj) is given by (pri,j1 )∗(ai), where pri,j1 : Ui ×U Uj → Ui is the projection on the
first component. Analogously we define amorphism pr∗2 : ΠiF (Ui)→ Πi,jF (Ui×U Uj). Then
the presheaf F is a sheaf iff, for all U ∈ C and all coverings {Ui → U}i∈I in C, the following
diagram is an equalizer:

0 F (U)
∏

i∈I F (Ui)
∏

i,j∈I×I F (Ui ×U Uj).
pr∗1

pr∗2

Before stating the main result of this section, let’s notice a simple fact.

Remark 1.15. If τ ′ is subordinate to τ , as pretopologies on C, then any sheaf in τ is also a sheaf
in τ ′. As a consequence, forC = Sch/S for some schemeS, any sheaf in the fpqc topology is also
a sheaf in the fppf, étale and Zariski topologies.

Finally we can state a very important result due to Grothendieck.

Theorem 1.16 ([Vis04, §2.3.6], Grothendieck). A representable functor on Sch/S is a sheaf in the
fpqc topology. In particular it is also a sheaf in the étale and fppf topologies.
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1.2 Morphisms of topoi
The main objects of our future studies will be sheaves on Sch/S taken with the fppf topology.
Since we will often be concerned with base change, i.e. pullbacks, of sheaves, we devote this sec-
tion to define this concept. Essentially we want to generalize the construction of fibered product
in the representable case.

Definition 1.17: Topoi.
Let C be a site. The associated topos to C is the category Sh (C) of sheaves on C. A morphism
of topoi f from Sh (D) to Sh (C) is the data of a pair of functors f∗ : Sh (D) → Sh (C) and
f−1 : Sh (C)→ Sh (D) such that, bifunctorially we have

HomSh(D)

(
f−1G,F

)
≃ HomSh(C) (G, f∗F )

and the functor f−1 commutes with finite limits. Moreover, given sites C,D and E and morph-
isms of topoi f : Sh (D) → Sh (C) and g : Sh (E) → Sh (D), we can define their composition
f ◦ g as the pair of morphisms (f ◦ g)∗ := f∗ ◦ g∗ and (f ◦ g)−1 := g−1 ◦ f−1.

Definition 1.18: Category over an object.
ConsiderC a category andU ∈ C an object. The category of objects overU , denoted byC/U orCU ,
is the category whose objects are morphisms Y → U in C and whose morphisms are morphisms
Y → Y ′ in C such that the following (natural) diagram commutes

Y Y ′

U.

Remark 1.19. If C is also a site we turn C/U into a site by defining the coverings of C/U to
be the families of morphisms {Vi → V }i∈I that, viewed as families in C, are coverings for the
pretopology on C.

Moreover there is a forgetful functor pU : C/U → C that simply forgets about themorphism.
Finally, given a morphism f : U → V there is an induced functor F : C/U → C/V given by
composition with f . Moreover we can notice that pU = pV ◦ F .

Lemma1.20 ([Stacks, Section 00XZ]). Given a siteC andU ∈ C, the forgetful functor pU : C/U →
C induces a morphism of topoi

jU : Sh (C/U) Sh (C) .

given by the functors j−1
U and jU ∗, whose lengthy definition is left to [Stacks, Chapter 00UZ].

Definition 1.21: Localization.
Let C be a site and U ∈ C.

1. We call the site C/U the localization of the site C at the object U .

2. The morphism of topoi jU : Sh (C/U)→ Sh (C) is called the localization morphism.

3. The functor jU ∗ is called the direct image functor.

4. Taken any sheaf F ∈ Sh (C), its image j−1
U F is called the restriction of F to C/U .

Remark 1.22 ([Stacks, Section 00XZ]). Let C and U be as before. For all F ∈ Sh (C), the evalu-
ation of j−1

U F onX/U := X → U ∈ C/U by

j−1
U F (X/U) = F (X).

4
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Lemma 1.23 ([Stacks, Lemma 03I4]). Let g : S → S′ be a morphism in Sch. Let j : Sch/S →
Sch/S′ be the corresponding localization functor, where both categories are taken with the fppf topology.
Then, for F ′ a sheaf of sets on Sch/S′, we have

1. j−1F ′(T/S) = F ′(T/S′) for any T ∈ Sch/S, where T/S′ is the image of T/S after
composition with g.

2. if F ′ is representable byX ′ ∈ Sch/S′, then j−1F ′ is representable byX ′
S := X ′ ×S′ S.

2 Group schemes
In this section we introduce the notion of group object in a category, giving all of the definition
in the context of group schemes, i.e. group objects in the category of (relative) schemes. In this
context we will develop all the important tools which will play a role later on in the dissertation,
starting from their application in the definition of p-divisible groups.

Definition 2.1: S-Group scheme.
Let F : (Sch/S)op → Gp be a functor. Assume that F is representable by G ∈ Sch/S, i.e.
functorially in T ∈ Sch/S we have

ιF (T ) ≃ HomSch/S (T,G) ,

where ι : Gp→ Sets is the forgetful functor. We callG a group scheme overS orS-group scheme.

Remark 2.2 (T -points of an S-scheme). Let’s recall a standard notation: let T ∈ Sch/S, one
defines the T -points ofG ∈ Sch/S as

G(T ) := HomSch/S (T,G) .

If we viewG, by theorem 1.16, as an fppf sheaf on Sch/S, instead, we will use the notation

Γ (T,G) := G(T )

for the sections of G on T . If, in particular, G is a group scheme then, by definition, G(T ) =
Γ(T,G) is endowed with group structure for every T ∈ Sch/S.

Remark 2.3. By definition, an abstract group is a setG ∈ Sets, endowed with an operation, an
inverse map and an identity element satisfying the usual properties. These can be rewritten in
terms of commutative diagrams. At first one writes the above as the following maps:

m : G×G G (multiplication)
inv : G G (inverse)
ε : {e} G (unit),

where {e} is the terminal object in Gp. Let’s write π : G → {e} as the unique arrow to the
terminal object of Gp and∆: G → G×G the diagonal morphism. Then the group axioms are
equivalent to the following equalities

m ◦ (idG×m) = m ◦ (m× idG),

m ◦ (idG×inv) ◦∆ = m ◦ (inv × idG) ◦∆ = ε ◦ π, (2.1)
m ◦ (ε× idG) = m ◦ (idG×ε) = idG .

Notice that in this last equality we implicitly use the isomorphisms {e} ×G ≃ G ≃ G× {e}.

5
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Remark 2.4. Given a group schemeG ∈ Sch/S, Yoneda’s lemma allows to translate the group
structure of G(T ), for all T ∈ Sch/S, into a group structure on G. In fact, since the universal
property of fibered product gives (G×S G) (T ) = G(T ) × G(T ), one obtains that there exist
unique maps

m : G×S G G (multiplication)
inv : G G (inverse)
ε : S G (unit)

inducing the group structure on G(T ) via Yoneda embedding. Then, again by Yoneda’s lemma,
also the above maps have to satisfy the properties written in equation (2.1). More explicitly.

1. Associativity of the product

G×S G×S G G×S G

G×S G G.

idG ×Sm

m×S idG m

m

2. Inverse morphism

G×S G G×S G

G S G

idG ×S inv

m∆

π ε

G×S G G×S G

G S G

inv×S idG

m∆

π ε

3. Identity element (again, as with groups, in the following diagramswe use the isomorphisms
S ×S G ≃ G ≃ G×S S)

G×S G G

S ×S G G

m

∼

ε×S idG idG

G×S G G

G×S S G.

m

∼

idG ×Sε idG

Definition 2.5: Commutative S-group scheme.
We say that a group schemeG ∈ Sch/S is commutative iffG(T ) is an abelian group for all T ∈
Sch/S. Using Yoneda’s lemma as before, this is equivalent to asking that the following diagram
commutes

G×S G G×S G

G.

(pr2,pr1)

m m

Remark 2.6. One can generalize the definition of group object, from the category ofS-schemes,
to any category C admitting finite products (hence with final object given by the empty product)
in the same manner as above. In fact, being S the final object in Sch/S, one sees that fibered
products over S (seen in the category of schemes) are just products in Sch/S.

Definition 2.7: Morphism of group schemes.
LetG,G′ be group schemes, a homomorphism of group schemes

α : G G′

6



is a morphismG→ G′ in Sch/S such that, for all T ∈ Sch/S, the corresponding morphism at
the level of T -points is a group homomorphism

α(T ) : G(T ) G′(T )

g α ◦ g.

Notice that the identity of a group scheme is clearly a homomorphism of group schemes and
compositions of group schemes homomorphisms are still group scheme homomorphisms.

Remark 2.8. Let G,G′ be group schemes, representing the functors F, F ′. Then, by Yoneda’s
lemma, giving a homomorphism α : G → G′ is equivalent to giving a morphism between the
functors they represent.

Again by Yoneda’s lemma, one sees that a morphism α : G→ G′ in Sch/S is a morphism of
group schemes iff it preserves products, i.e. iff

α ◦m = m′ ◦ (α, α),

form,m′ the product morphisms ofG andG′ respectively.

Definition 2.9: Category of S-group schemes.
Combining all of the definitions so far, one can define the subcategory Gp/S of Sch/S, of S-
group schemes, or more simply S-groups, whose objects are S-group schemes and morphisms are
homomorphisms of S-group schemes.

Remark 2.10 (Kernels and cokernels). As with any category, one defines kernels and cokernels
in Gp/S via the usual universal properties.

With regards to kernels, one can use the general construction in a category with zero object,
since for a morphism α : G→ G′ its kernel is just the fibered product ofG and 0 overG′, i.e.

kerα = lim←−

(
0

G G′α

)
= G×G′ 0.

Notice that in Gp/S, since (G×S H)(T ) = G(T )×H(T ), we can construct fibered products
and they coincide with those in Sch/S. Moreover its zero object is S. By definition there is a
unique morphism S → G′, which coincides with the unit morphism ofG′. Then the following
gives rise to a kernel for α in Gp/S

G×G′ S G,i

where i is the projection on the first factor. Hence kernels exist in Gp/S.
When it comes to cokernels, instead, one finds difficulties, much like with sheaves of abelian

groups. In fact, given a morphism α : G → G′, one cannot always find an object H ∈ Gp/S
representing the functor

T coker(αT ) = G(T )/G′(T ).

2.1 Affine group schemes
The above definitions have a dual interpretation in the affine case, which is the main topic of
this section. Moreover, in the rest of the discussion, we will mostly be concerned by affine group
scheme, hence the choice to dedicate a whole section to them. Many of the following results,
though, are still valid in a more general setting.

Then, for most of the following section we will fix an affine scheme S = Spec(R), and focus
on affine S-groups.
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Remark 2.11. If we considerG = Spec(A) affine, the arrow-reversing equivalence of categor-
ies between affineR-schemes and commutativeR-algebras, allows us to translate the structural
morphisms of schemes defined in remark 2.4 into appropriate R-algebra morphisms. Then the
properties defined by the diagrams in remark 2.4 will translate into properties for these new
morphisms.

Recall that the structural morphism π : G→ S corresponds to a morphismR→ Amaking
A into an R-algebra. Moreover the diagonal morphism ∆: G → G ×S G corresponds to the
multiplication morphism of theR-algebraA:

∆̃ : A⊗R A A

a⊗ b a · b.

With this in mind we obtain the followingR-algebra morphisms:

m̃ : A A⊗R A (comultiplication)

ĩnv : A A (antipode)

ε̃ : A R (counit/augmentation),

satisfying the duals of the diagrams in remark 2.4.

Definition 2.12: Hopf algebras.
AHopf algebra overR is anR-algebraA endowedwith a comultiplication, a counit and an antipode
map, respectively:

m̃ : A A⊗R A

ĩnv : A A

ε̃ : A R,

satisfying the conditions obtained by dualizing those of remark 2.4, more explicitly:

(m̃⊗R idA) ◦ m̃ = (idA⊗Rm̃) ◦ m̃,
(idA⊗Rε̃) ◦ m̃ = (ε̃⊗R idA) ◦ m̃ = idA,

∆̃ ◦ (idA⊗R ĩnv) ◦ m̃ = ∆̃ ◦ (ĩnv ⊗R idA) ◦ m̃ = (R→ A) ◦ ε̃.

Moreover one defines a morphism of Hopf algebras to be anR-algebra morphism preserving the
comultiplication morphism. Finally we call I := ker ε̃ the augmentation ideal ofA.

Remark 2.13. Dualizing the result for groups, one can see that a Hopf algebra homomorphism
preserves not only comultiplication, but also counit and antipode morphisms.

Remark 2.14 (Equivalence of categories). Clearly, then, any Hopf algebra over R gives rise to
an affine R-group via the aforementioned equivalence of categories. This is actually an anti-
equivalence of categories between affineR-group schemes and Hopf algebras overR. In fact the
multiplication morphism in a group scheme corresponds to the comultiplication morphism in
its associated Hopf algebra, and morphisms in the two categories are defined to preserve such
operations.

Definition 2.15: Augmentation ideal.
For a Hopf algebra A over R, the structure morphism R → A splits the following short exact
sequence

0 I A R 0.ε̃
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Hence we haveA = R · 1⊕ I , from which we deduce thatA⊗A = R⊕ (I ⊗ 1)⊕ (1⊗ I)⊕
(I ⊗ I). Finally it is easy to show that, for all f ∈ I ,

m̃(f)− f ⊗ 1− 1⊗ f ∈ I ⊗ I.

The following results are valid in a more general setting, so let’s change the assumption for S: we
will only assume it is a locally Noetherian scheme.

Remark 2.16 (Finite S-scheme). An S-schemeG is finite and flat over S iff its sheaf of regular
functionsOG is locally-free of finite rank as anOS-module. More explicitly thismeans that there
exists a cover of S by affine open subschemes on each of which the restriction of the structure
morphism is of the form Spec(A) → Spec(R), for A a free R-module of finite rank over R.
This is going to be our main interest in what follows.

It is also true that finite flat schemes over affine schemes are themselves affine. We are going
to be interested in the case of S = Spec(R), for R the ring of integers of a local field, and G
finite flat over S. In particular S andG will be Noetherian schemes andG, being finite flat over
S, is just Spec(A), for a finite projectiveR-moduleA (see, for instance, [Stacks, Lemma 00NX]).

Definition 2.17: Order of a finite flat S-scheme.
Given a finite flat S-scheme G, the rank of OG as an OS-module is a locally constant function
with respect to the Zariski topology taking integer values. We call such a function the order ofG
over S and denote it by [G : S]. Moreover we will use the notation [G : S] = n to state thatG
is finite flat of constant rank n over S.

Proposition 2.18 ([Tat98, §3]).

1. Consider the morphisms of schemesX → Y → S, with [X : Y ] = m. ThenX is finite and
flat over S iff Y is, in which case [X : S] = [X : Y ][Y : S] as functions on Y .

2. If [Xi : S] = ni for i = 1, 2, then [X1 ×S X2 : S] = n1n2.

3. If [X : S] = n, then [X ×S T : T ] = n for all T ∈ Sch/S.

2.2 Examples
In order to compute a few useful examples, let’s explicit the relation between multiplication in an
S-group and comultiplication in its associated Hopf algebra overR, for S = Spec(R).

Remark 2.19. As usual let G ∈ Gp/S. Yoneda tells us that the multiplication mapm : G ×S

G → G can be expressed as the product pr1pr2 of the two projection morphisms, using the
group law onG(G×SG). Then, in the case of affine schemes S = Spec(R) andG = Spec(A),
one can translate the above to the corresponding Hopf algebra morphism, using the equivalence
of categories. More explicitly one can describe the comultiplication map m̃ as the product in
HomR-Alg (A,A⊗R A) (which has the same group structure asG(G×S G)) of the embedding
morphisms

p̃r1 : a a⊗R 1 and p̃r2 : a 1⊗R a.

Example 2.20. In the following examples we will fix S := Spec(R) andG := Spec(A).

1. The additive group scheme, given byGa := Spec(R[x]). It is given onR-schemes by

X Γ (X,OX) ,

9
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in which Γ (X,OX) is viewed as an additive group. In fact we know that

HomSch/S (X,Ga) ≃ HomR-Alg (R[x],Γ (X,OX)) ≃ Γ (X,OX) ,

functorially in X . The last isomorphism is determined by (x 7→ a) 7→ a. The hom set
HomR-Alg (R[x], A) inherits the additive group structure from A. Moreover the embed-
dings ofR[x] inR[x]⊗R R[x] are given by

p̃r1(x) = x⊗R 1 and p̃r2(x) = 1⊗R x.

Finally, thanks to remark 2.19, we deduce that

m̃(x) = (p̃r1(x)) + (p̃r2(x)) = x⊗R 1 + 1⊗R x.

Then, from the properties of counit and antipode (see definition 2.12), one deduces

ε̃(x) = 0 and ĩnv(x) = −x.

2. The multiplicative group scheme Gm := Spec(R[x, x−1]). It acts onR-schemes by

X Γ (X,OX)
×
,

in which Γ (X,OX)
× is viewed as a multiplicative group. In fact one checks that

HomSch/S (X,G) ≃ HomR-Alg
(
R[x, x−1],Γ (X,OX)

)
≃ Γ (X,OX)

×
,

functorially inX . Then, reasoning as before, we obtain

m̃(x) = (p̃r1(x)) · (p̃r2(x)) = (x⊗R 1) · (1⊗R x) = x⊗R x.

Finally, from the properties of counit and antipode map (see definition 2.12) one deduces

ε̃(x) = 1 and ĩnv(x) = x−1.

3. The general linear group schemeGLn := Spec(R[x,y]/J), where

R[x,y] := R[x11, x12, . . . , xnn, y11, . . . , ynn]

and J is the ideal generated by the n2 entries of the matrix (xij)ni,j=1 · (yij)
n
i,j=1 − I ,

where I is the identity matrix. It acts on R-schemes by associating to X ∈ Sch/S the
multiplicative groupGLn(X) of invertiblen×nmatrices with coefficients inΓ (X,OX).
Let’s recall that, in GLn(X), the product (xi,j)ni,j=1 · (yi,j)

n
i,j=1 is given by (ci,j)ni,j=1,

where

ci,j =

n∑
l=1

xi,l · yl,j .

Then, reasoning as before, we can explicitly write the Hopf algebra maps. Indeed they are

m̃(xi,j)
n
i,j=1 =

n∑
l=1

xi,l ⊗R xl,j , ε̃(xi,j)
n
i,j=1 = 1, ĩnv(xi,j)

n
i,j=1 = (yi,j)

n
i,j=1,

where we recall that (yi,j)i,j satisfies (xij)
n
i,j=1 · (yij)

n
i,j=1 = I .
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4. The group scheme of nth roots of unity, denoted by µn. It is defined to be the kernel of the
nth powermorphismGm → Gm, corresponding to theR-algebramorphismµ : x 7→ xn.
Then µn is represented by Spec(cokerµ), and the morphism µn ↪→ Gm is given by the
projection

R[x, x−1] R[x, x−1]/(xn − 1),

which is surjective, making µn a closed subgroup scheme ofGm. We can also see that µn

is a finite and flat S-group scheme, since R[x, x−1]/(xn − 1) is finite and flat over R of
order n.

5. The diagonalizable group schemes. LetX be an ordinary commutative group, and denote by
R[X] :=

⊕
x∈X Rx its associated groupR-algebra. Then, forG = Spec(A), we have

HomR-Alg (R[X], A) ≃ HomAb

(
X,A×) ,

where the last hom set has a natural structure of abelian group. As before, we can endow
R[X] with a Hopf algebra structure given by

m̃(x) = x⊗ x, ε̃(x) = 1, and ĩnv(x) = x−1.

Wedefine the diagonalizable group schemeD(X) as the commutativeR-groupSpec(R[X]).
Two important cases are Gm ≃ D(Z) and µn ≃ D(Z/nZ). Moreover, if X is finite,
R[X] is a free R-module of rank n, making D(X) commutative, finite and flat over R
of order n. More generally, for X finitely generated, from the structure theorem for fi-
nitely generated abelian groups,X is isomorphic to a finite product of cyclic groups. Hence
D(X) is a finite product of copies of Gm and µn, for various n. It is then a closed sub-
group scheme ofGr

m, for some r, which again can be seen as the closed subgroup scheme
of diagonal matrices ofGLr , explaining the name diagonalizable.

6. The constant group scheme. Let R be a ring and Γ an ordinary, finite commutative group.
We defineA to be theR-algebraRΓ, of set-theoretic functions from Γ toR. A basis forA
is given by {eσ}σ∈Γ, for eσ(γ) = δγ,σ , where δ is Kronecker’s delta function. Let’s define
onA the following Hopf algebra structure:

m̃(eρ) :=
∑
γτ=ρ

eσ ⊗ eτ , ĩnv(eσ) := eσ−1 , ε̃(eσ) :=

{
1 if σ = 1 ∈ Γ

0 otherwise.

ThenA represents an S-group scheme, called the constant group scheme for Γ, which we
denote by Γ.

7. The group scheme of prth roots of zero, if charR = p, denoted by αpr . It is defined to be the
kernel of the prth powermorphismGa → Ga, corresponding to theR-algebra morphism
α : x 7→ xp

r

. Then αpr is represented by Spec(cokerα). Moreover this is an additive
subgroup scheme, since charR = p. As for µn, it is a closed finite flat subgroup scheme of
Ga of order pr .

Remark 2.21 (Base change).
1. LetU, T ∈ Sch/S be twoS-schemes. We use the notationUT for the base changeU×ST .

It is important to notice that, for V ∈ SchT , we have UT (V ) = U(V ), where in the last
expression we considered V as an S scheme, by V → T → S.

2. In particular the examples we have developed so far can all be given for Z-group schemes
(apart from αp, which requires a base ring of characteristic p). Then we will use the nota-
tion given in the examples to mean the group scheme over Z (resp. Fp) and take their base
change when working in Sch/S for an appropriate S.
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2.3 Connected-étale sequence
There is a really important short exact sequence that can be constructed starting just from the
data of a finite flat R-group, for a Henselian ring R. The aim of this section is to look at the
construction of such sequence.

Quotients and exactness

In order to construct any short exact sequences we need to tackle the problem of the construction
of cokernels, hence of quotient groups. For greater generalitywewill approach this problemusing
the language of group action. Moreover we keep the assumption, from the previous section, that
the base scheme S is a locally Noetherian scheme.

Definition 2.22: Right action.
LetH be an S-group scheme, and takeX ∈ Sch/S. A right action ofH onX is a morphism

a : X ×S H X

such that, for all T ∈ Sch/S, the induced mapX(T ) ×H(T ) → X(T ) is a right action of the
groupH(T ) on the setX(T ). We say that the action is strictly free iff the morphism

(pr1, a) : X ×S H X ×S X

is a closed immersion.

The next propositionwill allow us to construct quotients ofS-group schemes by finite, flat closed
subgroup schemes. It actually is a consequence of the following, more general result, due to
Grothendieck.

Theorem 2.23 ([Tat98, §3.4]). Suppose thatH , finite flat over S, acts strictly freely onX of finite type
over S in such a way that every orbit is contained in an affine open set. Then there exists Y ∈ Sch/S
and a morphism u : X → Y , constant on orbits, such that for every morphism v : X → Z constant on
orbits, there is a unique morphism f : Y → Z such that v = f ◦ u. We denote Y byX/H , and notice
that u has the following properties:

1. X is finite flat overX/H and [X : (X/H)] = [H : S];

2. for every T ∈ Sch/S, the following map is injective

X(T )/H(T ) (X/H)(T ).

As promised we obtain the following result for group schemes.

Proposition 2.24 ([Tat98, §3.5]). LetG be an S-group scheme of finite type andH ⊂ G a finite flat
closed subgroup scheme. Define the action a : G ×S H → G as the restriction of the group lawm on
G. ThenG/H is the scheme of left cosets ofH inG.

Assume, moreover, that G/H is finite and flat over S, with order [(G/H) : S]. We will call this
the index ofH inG and denote it by [G : H]. ThenG is finite and flat over S and we have

[G : H][H : S] = [G : S].

Finally, in order to take quotients inGp/S, we need to introduce the notion of normal subgroup.
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Definition 2.25: Normal subgroup.
Let G be an S group and H be a subgroup scheme of G, i.e. H is a subscheme of G and the
inclusion morphism is a homomorphism of group schemes. We say thatH is a normal subgroup
scheme ofG iff, for all T ∈ Sch/S, the subgroupH(T ) ofG(T ) is a normal subgroup.

Remark 2.26 (Short exact sequence). Assume, in the hypothesis of proposition 2.24, that H is
also normal in G. Then the multiplication on G induces a multiplication morphism on G/H ,
making it anS-group scheme. Moreover the map u : G→ G/H is anS-group homomorphism.
In particular this gives rise to the short exact sequence of group schemes

1 H G G/H 1,i u

where short exactness also means that i is a closed immersion and u is faithfully flat. Here and
in the rest of the discussion 1 will denote the constant S-group scheme 1, as seen in item 6 of
example 2.20.

Separable algebras and étale group schemes

We want to introduce the notion of étale S-group, since it will be one of the central players in
the short exact sequence we want to construct. Since the study of étale group schemes is strictly
related to that of separable algebras, we will start by analysing the latter.

Theorem 2.27 ([Wat79, §6.2]). Let k be a field and denote by kalg and k respectively an algebraic and
a separable closure of k. LetA be a finite dimensional k-algebra. The following are equivalent:

1. A⊗k k
alg is reduced;

2. A⊗k k
alg ≃ kalg × · · · × kalg;

3. The number of k-algebra homomorphismsA→ kalg equals the dimension ofA over k;

4. A is a product of separable field extensions of k;

5. A⊗k k ≃ k × · · · × k.

If, moreover, k is a perfect field, all of the above are equivalent to

6. A is reduced.

Definition 2.28: Separable algebra.
A k-algebraA satisfying the equivalent conditions of theorem 2.27 is called separable.

Corollary 2.29 ([Wat79, §6.2]). Subalgebras, quotients, products and tensor products of separable k-
algebras are separable. Moreover, given L/k a field extension, A is separable over k iff A ⊗k L is
separable over L.

For the following definition we will not assume maximal generality, but we will restrict to a case
which includes the situation we will be concerned with, i.e. finite flat schemes over a Noetherian
affine base.

Definition 2.30: Unramified and étale morphism of schemes.
Let f : X → S be a morphism of finite type between locally Noetherian schemes.

1. We say that f is unramified at x ∈ X iff, for s := f(x), the image f#s (ms) generates mx

inOX,x and κ(x)/κ(s) is a finite and separable field extension.
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2. We say that f is étale at x ∈ X iff it is flat and unramified at x.

3. We say that f is unramified (resp. étale) iff it is unramified (resp. étale) at every point ofX .

4. We say thatX ∈ Sch/S is unramified (resp. étale) iff its structure morphism is unramified
(resp. étale).

As promised, here is the connection between the concept of separable algebra and that of étale
morphism.

Lemma 2.31 ([Stacks, Lemma 02GL]).

1. A schemeX is étale over a field k iffX = Spec(A) for a separable k-algebraA.

2. If f : X → S is an étale morphism of schemes, for every s ∈ S, the fiber at s is given by
Xs = Spec(As), for a separable κ(s)-algebraAs.

Lemma2.32 ([Stacks, Lemma02GM]). Let f : X → S be amorphism of schemes. Assume, moreover,
that f is flat, locally of finite presentation and that, for all s ∈ S, the fiber Xs := X ×Spec(κ(s))

Spec(κ(s)) is a disjoint union of finite separable extensions of κ(s). Then f is étale.

Finally we quote an important result which concerns finite étale group schemes over a field.

Definition 2.33: Discrete Gk-groups.
Let k be a field and k a fixed separable closure of k. Let Gk := Gal

(
k/k

)
be the absolute Galois

group ofk. Wedefine the category of abstract discrete finiteGk-groups as the categorywhose objects
are abstract finite groups endowed with the discrete topology and a continuous action of Gk via
group homomorphisms. A morphism of abstract discrete finite Gk-groups is a Gk-equivariant
group homomorphism.

Theorem 2.34 ([Mil17, §2.16]). The functor G 7→ G(k) is an equivalence of categories between the
category of étale group schemes over k and the category of abstract discrete finite Gk-groups.

Remark 2.35 ([Sha86, §3, example (7)]). We can generalize the above result to the case of a base
scheme S := Spec(R), where R is a complete (or more generally Henselian) Noetherian local
ringwith residue fieldk. In this case, again, we find an equivalence of categories, this timebetween
the category of abstract discrete finite Gk-groups and that of étaleR-group schemes.

Example 2.36. Important examples of étale group schemes are given by constant group schemes
over fields. In fact they are represented by the spectrum of a finite product of copies of the base
field, hence they are étale by theorem 2.27 and lemma 2.31. More generally, in case the base
scheme is a Noetherian discrete valuation ring, we can reduce to the above arguments on the two
fibers thanks to lemma 2.32 and obtain the same result. In fact we only need to show that the
structure morphism is flat, which corresponds to showing that our algebra is a flat module over
the base ring. But this is the case, since as a module it is a finite product of copies of the base ring.

Connected-étale exact sequence

In the following section we will always assume S = Spec(R) for a Henselian local ring R. We
will denote bym its maximal ideal, by k := R/m its residue field and by s := Spec(k) the closed
point ofR. Finally byG we will denote a finite and flat S-group scheme.

Theorem 2.37 ([Tat98, §3.7], Connected-étale exact sequence). LetG0 be the connected component
of the identity in G. Then G0 is the spectrum of a local R-algebra with residue field k = R/m and it
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is a flat, closed normal subgroup scheme of G. Moreover the quotient Gét := G/G0, constructed as in
proposition 2.24, is étale and gives rise to the short exact sequence

1 G0 G Gét 1,

called the connected-étale sequence for G. In particular it can be characterized by the fact that every
homomorphism from G to an étale S-group factorizes through G → Gét, and G0 is the kernel of that
homomorphism.

Proposition 2.38 ([Tat98, §3.7]).

1. Assume charR = 0, then G0 = S and G = Gét. If, instead, charR = p > 0, we have
[G0 : S] = pt for some t. As a consequence, if [G : S] is invertible in S, thenG is étale over S.

2. If R = k is a field and n = [G : S], then xn = 1 for all x ∈ G(B) for any k-algebra B. We
say thatG is killed by its order.

3. If R is a perfect field, then the homomorphism G → Gét admits a section. As a consequence
G = G0 ⋊Gét can be expressed as a semidirect product.

2.4 Cartier Duality
In this sectionwewill introduce a notion of duality for finite, flat and commutative group schemes
over a ring. Hencewewill restrict our attention toS = Spec(R) affine andG finite commutative
over S, hence affine, let’s sayG = Spec(A).

Remark 2.39. In remark 2.16 we recalled that A is a finite projective R-module. Then, still
arguing by [Stacks, Lemma 00NX]),A is a finite and locally-freeR-module. For anR-moduleM
we define its dualR-module to beMD := HomR (M,R). Hence, for any couple of locally-free
R-modules of finite rankM andN , one has the natural isomorphisms

M (MD)D and MD ⊗R N
D (M ⊗R N)

D
.∼ ∼

Remark 2.40 (Dual algebra). To theR-algebraA we can associate theR-module

AD := HomR-Mod (A,R) .

Thanks to the above remark, in caseA is given with a cocommutative Hopf algebra structure, one
can dualize it to obtain a (cocommutative) Hopf algebra structure on AD . In particular product
and coproduct ofA become, respectively, coproduct and product ofAD , as

(∆̃)D : AD AD ⊗R A
D and (m̃)D : AD ⊗R A

D AD.

More explicitly (∆̃)D and (m̃)D are the transpose maps of ∆̃ and m̃ respectively, i.e.

(∆̃)D := HomR-Mod(∆̃, R) : HomR-Mod (A,R) HomR-Mod (A⊗R A,R)

f f ◦ ∆̃,

where, sinceA is a finite projectiveR-module, on the right hand side we have the isomorphism

HomR-Mod (A⊗R A,R) ≃ HomR-Mod (A,R)⊗R HomR-Mod (A,R) .

Analogously one constructs (m̃)D .
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Definition 2.41: Cartier dual.
Given a S andG as before, we define the dual ofG as the group scheme defined by

GD := Spec(AD).

Theorem2.42 ([Wat79, §3.7], Cartier duality). LetG be a finite, commutativeS-group scheme. Then
the following facts hold true.

1. GD is a finite commutative S-group scheme.

2. (GD)D ≃ G.

3. For allH,G ∈ Gp/S finite commutativeHomGp/S (G,H) ≃ HomGp/S

(
HD, GD

)
.

4. FormingGD commutes with base change.

Remark 2.43. Duals of finite commutative group schemes inherit some other properties, in fact
[GD : S] = [G : S]. Moreover the dual of a short exact sequence is short exact.

One can also interpret duality from a different point of view. Here are the relevant notions.

Definition 2.44: Characters of S-groups.
LetG be an S-group scheme. A character ofG is a homomorphism of S-groups

χ : G Gm,S ,

whereGm,S denotes the base change ofGm to S.

Remark 2.45 ([Wat79, §2.4], Dual as hom functor). Characters form a group in the set of morph-
isms of S-schemes between G and Gm,S . Then one can introduce the contravariant sheaf hom
functor, also called internal hom functor, from Sch/S to Ab

HomGp/S (G,Gm,S) : T HomGp/T (GT ,Gm,T ) .

Then, for a finite, commutative S-groupG we have the isomorphism

GD ≃ HomGp/S (G,Gm,S) .

This is actually one of the cases in which the above hom functor is representable.

Let’s now give a few examples of dual group schemes among the ones we introduced so far:

Example 2.46.
1. The dual algebra of RΓ is R[Γ] and viceversa. Hence diagonalizable finite group schemes

are dual to constant commutative group schemes. In particular this yields that µn is dual
to Z/nZ and viceversa.

2. The group αp is self dual, i.e. αD
p ≃ αp. In fact we can view αD

p as the character group

HomGp/Fp

(
αp,Gm,Fp

)
.

Then, for any Fp-algebraR, we can define the exponential map

exp: αp(R) Gm,Fp

r exp(r) := 1 + r + r2

2! + · · ·+
rp−1

(p−1)! .

With this notation it can be shown that, for any T ∈ Sch/Fp, self duality is given by

αp(T ) HomGp/T (αp,T ,Gm,T )

ξ (r 7→ exp(ξ · r)) .

∼
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2.5 Frobenius and Verschiebung
In this section we want to construct two important maps, the Frobenius and Verschiebung maps,
and present an important relation they satisfy. For their definition we will assume thatR is a ring
with charR = p.

Definition 2.47.
For any R-algebra A, denote by φA : A → A the morphism acting by a 7→ ap. It induces
Spec(φA) : Spec(A) → Spec(A), which is the identity at the level of topological spaces. This
map, moreover, can be glued for anyR-schemeX , giving rise to a map φX : X → X such that

1. it is the identity at the level of topological spaces,

2. for any U ⊂ X open, it induces the p-power map as a ring homomorphism OX(U) →
OX(U).

We will denote byX(p) the fibered product

X(p) := X ×R Spec(R) X

Spec(R) Spec(R).φR

Finally we can construct the map FX/R : X → X(p), which we will denote simply by FX when
the base scheme is clear, as the unique map making the following diagram commute:

X

X(p) X

Spec(R) Spec(R).

φX

FX/R

φR

Definition 2.48: Frobenius morphism.
ForR a ring of characteristic p, andX anR-scheme, we define

1. φX : X → X the absolute Frobenius morphism ofX ,

2. FX : X → X(p) the relative Frobenius morphism ofX .

Remark 2.49. Notice that the relative Frobenius FX is a morphism of R-schemes, for allX ∈
Sch/R. Instead the absolute Frobenius φX , in general, is not.

Notation 2.50.
Given a morphism ofR-schemes f : X → Y , we define

f (p) := f × idR : X(p) Y (p).

Lemma 2.51. If G is an R-group scheme, for R a ring of characteristic p, the relative Frobenius
FG : G→ G(p) is a homomorphism ofR-group schemes.
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Definition 2.52: Nilpotent Frobenius.
1. We set, for any X ∈ Sch/S and any integer n ≥ 0, X(0) := X and X(pn+1) :=(

X(pn)
)(p). Then we denote by Fn

X : X → X(pn) the n-fold composition

X X(p) · · · X(pn−1) X(pn).
FX

F
X(p) F

X(pn−1)

2. Assume now thatG := X is an S-group scheme. By lemma 2.51 Fn
G is a homomorphism

of S-group schemes. We say that FG is nilpotent iff there is an integer n ≥ 1 such that Fn
G

is the trivial homomorphism.

The following results hold for group schemes over a field, hence we will replaceR by a field k of
characteristic p > 0.

Proposition 2.53. LetG be a finite k-group scheme. The following are equivalent:

1. G is étale,

2. kerFG = 1,

3. FG is an isomorphism.

Proposition 2.54. Let G be a finite commutative k-group scheme. Then G is connected iff FG is
nilpotent.

Definition 2.55: Verschiebung.
Let G be a finite, commutative R-group scheme. By theorem 2.42 (G(p))D ≃ (GD)(p). One
defines the Verschiebung homomorphism

VG := FD
GD : G(p) G

as the dual to FGD : GD → (GD)(p) ≃ (G(p))D , recalling that ((G(p))D)D ≃ G(p) and
(GD)D ≃ G. The word Verschiebung is a German word, meaning "the shift".

Remark 2.56.
1. By Cartier duality one sees that FD

G = VGD and V D
G = FGD .

2. One constructsV n
G by successive compositions as forFn

G . Thenwe say thatVG is nilpotent
iff there exists an integer n ≥ 1 such that V n

G is the trivial homomorphism.

Let’s briefly quote a result, which is dual to proposition 2.53 and proposition 2.54.

Proposition 2.57. LetG be a finite commutative k-group scheme. Then the following hold true.

1. cokerVG = 1 iff VG is an isomorphism iffGD is étale.

2. VG is nilpotent iffGD is connected.

We will conclude this section with a famous and useful relation between Frobenius and Ver-
schiebung.

Theorem 2.58 ([Mil17, §11.i]). Let G be a finite commutative k-group scheme. Then the following
diagram commutes

G G

G(p) G(p),

p·idG

FG

FG

VG

p·id
G(p)

where p · idG denotes the multiplication by p onG.

18



3 p-divisible groups
The aim of this section is to introduce, from two different points of view, the notions of formal
Lie group and of p-divisible group, and to show how the two concepts are related to one another.
Before doing so, though, we need to introduce a new notion, that of formal scheme.

3.1 Formal schemes
These definitions are meant to allow to capture infinitesimal information which, due to the ex-
cessive coarseness of Zariski topology, is not present in the construction of schemes. We will not
have time to discuss such interpretation, and will only restrict to stating the definitions and res-
ults which will be needed in what follows. This section is strongly inspired from [Stacks, Section
0AHY], which in turn bases itself on [EGA, Chapter I, §10]. Let’s start by recalling a few useful
algebra definitions.

Definition 3.1: Topological rings and modules.

1. We say that a ring R is a topological ring iff it is a ring endowed with a topology such that
both addition and multiplication are continuous mapsR×R→ R, whereR×R is taken
with the product topology.

2. We say that anR-moduleM , whereR is a topological ring, is a topological module iffM is
endowedwith a topology such that addition and scalar multiplication are both continuous,
again with their sources taken with the product topology.

3. We say thatR is linearly topologized iff 0 has a fundamental system of neighbourhoods con-
sisting of ideals. AnalogouslyM is linearly topologized iff 0 has a fundamental system of
neighbourhood consisting of submodules.

4. IfR is linearly topologized, we say that the ideal I ◁ R is an ideal of definition iff I is open
and every neighbourhood of 0 contains In for an appropriate n ∈ N.

5. R is admissible iff it has an ideal of definition and it is complete, i.e. all Cauchy sequences
admit a limit in R .

Definition 3.2: Completed tensor product.
LetR be a topological ring andM,N be linearly topologizedR-modules. LetMµ◁M andNν◁N
run through fundamental systems of open submodules ofM andN respectively. We endow the
tensor product ofM andN with the linear topology defined by the fundamental system of open
submodules

im{Mµ ⊗R N +M ⊗R Nν M ⊗R N}.

Then we define the completed tensor product as the completion of the tensor product with respect
to the topology we just defined, i.e. as

M⊗̂RN := lim←−
M ⊗R N

Mµ ⊗R N +M ⊗R Nν
= lim←−M/Mµ ⊗R N/Nν .

Remark 3.3. In the case where R is a complete topological ring, M = R[[X1, . . . , Xn]] and
N = R[[Y1, . . . , Ym]], one obtains the isomorphism

R[[X1, . . . , Xn]]⊗̂RR[[Y1, . . . , Ym]] ≃ R[[S1, . . . , Sn, T1 . . . , Tm]].

Above we denoted by Sj := Xj ⊗ 1 and by Tj := 1⊗ Yj .
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Definition 3.4: Pseudo-discrete sheaves.
A sheafF of topological rings (resp. topological modules, topological groups, etc) is called pseudo-
discrete iffF(U) is endowed with the discrete topology, for all open U ⊂ X .

Definition 3.5: Associated pseudo-discrete sheaf.
LetX be a topological spacewith a basis of the topology consisting of quasi compact open subsets
(for example Spec(R) for a ring R). Given any sheaf F of rings (resp. modules, groups, etc)
we define the associated pseudo-discrete sheaf, still denoted by F , as the sheaf of topological rings
(resp. topological modules, topological groups, etc) with topologies defined as follows. To each
U ⊂ X open and quasi compact we endow F(U) with the discrete topology. For an arbitrary
open U =

⋃
i∈I Ui, where Ui are all quasi compact open, we endow F(U) with the induced

topology from Πi∈IF(Ui), via the inclusion in the definition of sheaf, which comes from the
exact sequence in remark 1.14.

Remark 3.6. In the above one should verify good definition of the topology. For questions of
space we will leave these verifications to [Stacks, Section 0AHY] and [EGA, Chapter I, §10].

Definition 3.7: Locally topologically ringed spaces.
We define a locally topologically ringed space, for short ltrs, to be a pair (X,OX) consisting of a
topological spaceX and a sheaf of topological ringsOX , whose stalks are local rings. Amorphism
of locally topologically ringed spaces (X,OX)→ (Y,OY ) is a pair

(
f, f#

)
, where f : X → Y is a

continuous map and f# : OY → f∗OX is a morphism of sheaves such that, for all V ⊂ Y open,
the map

f#V : OX(V ) OX(f−1(V ))

is continuous and, for all x ∈ X , the induced map at the level of stalks

f#x : OY,f(x) OX,x

is a local homomorphism of local rings (here we forget about topology). We define the category of
locally topologically ringed spaces, denoted by ltrs, as the category whose objects and morphism
have just been described.

We now have enough basic definitions to give that of formal scheme. Let’s notice that this con-
struction follows that of [EGA, Chapter I, §10], hence all of the verifications can be checked there.

Definition 3.8: Affine formal scheme.

1. Let A be an admissible ring, with fundamental system of neighbourhoods {Iλ}λ∈Λ. We
define

Spf(A ) := {p ◁A | p is open and prime} ⊂ Spec(A ),

and endow Spf(A ) with the subset topology. For each λ ∈ Λ, one can associate, as
in definition 3.5, to the structure sheaf OSpec(A /Iλ) of Spec(A /Iλ), a pseudo-discrete
sheaf, which we will denote by Oλ. One should also notice that, since A is admissible,
Spec(A /Iλ) has indeed the same topological space as Spf(A ) for all Iλ. Moreover, for
Iλ ⊂ Iµ, one has an induced homomorphism

Spec(A /Iµ) Spec(A /Iλ),

which gives rise to a compatible system. Then one defines

OSpf(A ) := lim←−
λ∈Λ

Oλ,

where the limit is taken in the category of sheaves of topological rings. Finally one defines
the pair (Spf(A ),OSpf(A )) to be the formal spectrum of A .
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2. A locally topologically ringed space is said to be an affine formal scheme iff it is isomorphic, in
ltrs, to the spectrum of an admissible ring. A morphism of affine formal schemes is just a
morphism of the underlying locally topologically ringed spaces.

Remark3.9. As in the definition of associated pseudo-discrete sheaf, in the above there aremany
details to be checked and filled in. Again we will leave them to [EGA, Chapter I, §10].

Remark 3.10. One can prove that, much like with affine schemes, the category of affine formal
schemes is anti-equivalent to that of admissible topological rings. In particular we have

Homltrs (Spf(B),Spf(A )) ≃ Homcont (A ,B) ,

where in the right hand side we considered only continuous morphisms of rings, i.e. morphisms
in the category of admissible topological rings.

Definition 3.11: Formal scheme.
A formal scheme is a locally topologically ringed space (X,OX) such that every point has an open
neighbourhood isomorphic, in ltrs, to an affine formal scheme. A morphism of formal schemes is
just a morphism of the underlying locally topologically ringed spaces.

Remark 3.12. Following the construction of associated pseudo-discrete sheaf, one can associ-
ate to any scheme a formal scheme. This actually gives rise to a fully faithful embedding of the
category of schemes in that of formal schemes.

To ease the transition to the study of p-divisible groups let’s also recall a couple of results with
these objects.

Remark 3.13. Since it will be our main interest, let’s restrict to the affine case. Given an admiss-
ible ring A , with fundamental system of ideals {Iλ}λ∈Λ, we have

Spf(A ) ≃ lim−→
λ∈Λ

Spec(A /Iλ)

in the category of formal schemes. In fact, as can be seen in [EGA, Chapter I, §10.6], one can do
a similar construction with formal schemes. Hence we can view these last as inductive limits of
ordinary schemes.

Remark 3.14. Moreover, with regards to the construction of p-divisible groups and formal Lie
groups, wewill follow [Sha86, §5] for the point of viewof formal schemes. Then, aswewill remark
again, we will fix R a local admissible ring and S := Spec(R). Moreover we will mainly deal
with formal affine schemes over S which are given by inductive limits of what Shatz defines very
finite schemes over S. More explicitly he says that an S-schemes T is very finite iff it satisfies:

1. T is finite and flat over S (hence affine) and

2. the R-module Γ (T,OT ) is of finite length.

Specializing remark 3.10 to the case of this family of formal affine schemes overS, i.e. thosewhich
are given by inductive limits of very finite S-schemes, we obtain an anti-equivalence of categories
with the category of profinite R-algebras. This is the setting in which we will state most results
in the formal scheme setting in the following sections.

3.2 Formal groups and formal Lie groups
In this sectionwewill define the concept of formal Lie group, generalizing that of Lie group, i.e. that
of group in the category of complex analytic manifolds, without the restriction of convergence of
the series defining the group operation.

Starting from this sectionwewill define concepts both in terms of formal schemes, borrowing
from [Sha86], and in terms of fppf sheaves, borrowing from [Mes72].
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Formal schemes point of view

As anticipated in remark 3.14, we fixR a local admissible ring, S := Spec(R) and wework only
with inductive limits of very finite S-schemes.

Definition 3.15: Formal group schemes.
A formal group scheme is just a group object, as defined in remark 2.6, in the category of formal
schemes. Analogously a formal S-group scheme is a group object in the category of formal schemes
over S.

Remark3.16. Aswith the case of group schemes, in the affine caseG = Spf(A ), one defines, on
A , comultiplication, antipode and counitmorphismswith the usual properties of definition 2.12.
One should note, though, that in the category of profinite R-algebras, the coproduct is given by
the completed tensor product, hence the comultiplication is a morphism

m̃ : A A ⊗̂RA .

One can generalize the results of theorem 2.37 to this new setting.

Theorem 3.17 ([Sha86, §5]). LetG be a formal group scheme over S. Then there is a canonical short
exact sequence

1 G0 G Gét 1,

in whichG0 is a connected normal formal subgroup ofG andGét is an étale formal group.

The following definition is not the most general one, but the right one in our context.

Definition 3.18: Formal Lie group.

1. A formal S-group G is said to be smooth iff G0, as defined in theorem 3.17, is the formal
spectrum of a power series ring over R .

2. A formal Lie group over S is a smooth, connected formal S-group. More explicitly it is
Γ := Spf (A ), where A := R[[X1, . . . , Xn]]. Moreover we say that n is its dimension.

Remark 3.19. As stated in remark 3.16, since a formal Lie group is an affine formal scheme, one
gets a Hopf algebra structure on A . As formal Lie groups are often introduced giving focus only
on the comultiplication morphism and its axioms, we will recall them here, with names which
can be found in the literature. More explicitly comultiplication of the formal Lie group Spf(A )
is a morphism of topological rings

f : A A ⊗̂RA = R[[X1, . . . , X2n]],

satisfying the following conditions:

1. ε axiom:X = f(X, 0) = f(0, X);

2. coassociativity: f(X, f(Y,Z)) = f(f(X,Y ), Z);

3. commutativity: f(X,Y ) = f(Y,X).

Notice that any such morphism f is just the data of (fi(Y,Z))ni=1, power series in 2n variables,
where fi is the image ofXi via f . Again, as is often found in the literature, one denotes the image
of comultiplication by

X ∗ Y := f(X,Y ).
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One can also prove that these axioms are enough to grant the existence of the inverse for any
element of Γ, hence they suffice to give Γ a formal group scheme structure.

Finally a note on terminology and the axioms. At first one can notice that we have never
explicitly asked a formal Lie group to be commutative, but we have added the axiom here. In fact,
much like the choice of introducing them via the explicit description of the group law, this is a
choice which brings this definition closer to the analogous concept of Lie groups over complex
analytic manifolds. Moreover, in the future, we will mainly concentrate on Lie groups related to
p-divisible groups, which are assumed to be commutative.

Definition 3.20: p-divisible formal Lie group.
We define the mapmultiplication by p on a formal affine group scheme Γ := Spf(A ) as the map
p : Γ→ Γ associated to

ψ : A A

X X ∗ · · · ∗X (p times).

If, moreover, Γ is a formal Lie group, it is said to be p-divisible iff the map p is an isogeny, i.e. it is
surjective and has finite kernel. This means that A is a freemodule of finite rank over itself.

fppf sheaves point of view

In the following part we will always write groups over S, or S-group, to mean an fppf sheaf
of commutative groups on the site (Sch/S)fppf . We will add a modifier adjective, such as flat,
finite or locally-free, to indicate that the S-group in question is representable. Also the schemes
X,Y ∈ Sch/S will be viewed, via the associated functor of points, as sheaves on S for the fppf
topology. Recall that, for Y ∈ Sch/S, sections on T ∈ Sch/S of Y are just T -points and, as
usual with sheaves, we denote them by

Γ (T, Y ) := Y (T ).

Notation 3.21.
To differentiate the above definition of S-group, which does not require representability, from
that of definition 2.9, we will denote the category of group schemes as fppf sheaves by Gr/S, as
opposed to Gp/S.

Remark 3.22. Since the category of commutative groups, i.e. Ab, is abelian we see that Gr/S
inherits two important properties. First of all, as proved in [Stacks, Lemma 03CN], Gr/S is an
abelian category. Moreover, as proved in [Stacks, Theorem 01DP], it has enough injectives.

Remark 3.23. Since the category Gr/S does not require representability, to define the pullback
for a morphism of schemes f : S → S′ we need to use the localization morphism of topoi, as
defined in definition 1.21.

Definition 3.24: kth infinitesimal neighbourhood.
Let Y ↪→ X be a monomorphism of fppf sheaves on Sch/S. We define InfkY (X) as the subsheaf
ofX whose sections on anS-schemeT are given as follows. The sectionsΓ(T, InfkY (X)) consist
of all t ∈ Γ (T,X) such that there is an fppf covering {Ti → T}i∈I of T and, for each i, a closed
subscheme T ′

i of Ti, defined by an ideal whose (k+1) power is (0), with the property that every
element t|T ′

i
∈ Γ(T ′

i , X) is already an element of Γ(T ′
i , Y ).

Notation 3.25.
LetX be a sheaf on S, with a section eX : S → X . If this section is clear from context, e.g. in
case we have (X, eX) a pointed sheaf on S, i.e. a sheaf on S given with a section eX : S ↪→ X ,
we will write Infk(X) instead of InfkS(X).
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Remark 3.26. Notice that, whenG = X is anS-group, it is canonically a pointed sheaf (G, eG)
on S, with immersion eG : S → G given by the unit section, i.e. the unique section whose image
is the unit of the group G. In the following we will implicitly assume this, and write only G to
denote the pointed sheaf (G, eG).

Notation 3.27.
For a scheme S and an S-groupG ∈ Gr/S, we introduce the notation

G := lim−→
k∈N

infk(G),

where the limit is taken with respect to the natural inclusion morphisms.

Definition 3.28: Ind-infinitesimal sheaf.
A pointed sheaf (X, eX) is called ind-infinitesimal iff, as an fppf sheaf,X = X .

Right now we need to introduce a couple more concepts from algebraic geometry to make sense
of the definitions which are at the heart of this section.

Definition 3.29: Conormal sheaf of an immersion.
Let ι : Z → X be a closed immersion of schemes. Let I ⊂ OX be the corresponding quasi-
coherent sheaf of ideals. Then the sheaf I/I2 is annihilated by I , hence it corresponds to a sheaf
on Z . This last sheaf, denoted with ωι, is called the conormal sheaf of Z in X , or the conormal
sheaf of the immersion ι. In case we are given (X, eX), a pointed sheaf on S, we will denote the
conormal sheaf of the immersion eX simply by ωX .

Definition 3.30: Symmetric and exterior powers.
Let (X,OX) be a ringed space andF be anOX-module.

1. We define the tensor algebra ofF to be the sheaf of noncommutativeOX-algebras

T(F) = TOX
(F) :=

⊕
n≥0

Tn(F),

whereT0(F) := OX ,T1(F) := F and, for all n ≥ 2,

Tn(F) := F ⊗OX
· · · ⊗OX

F (n times).

2. We define the exterior algebra ofF , denoted by
∧
F , to be the quotient ofT(F) by the two

sided ideal generated by local sections of the form s⊗s ofT2(F), where s is a local section
ofF .

3. We define the symmetric algebra of F , denoted by Sym(F), to be the quotient of T(F) by
the two-sided ideal generated by local sections of the form s⊗ t− t⊗ s ofT2(F), where
s and t are local sections ofF .

Remark 3.31.

1. Both
∧
F and Sym(F) are graded OX-algebras whose grading is inherited from T(F).

Moreover Sym(F) is commutative, whereas
∧
F is graded-commutative.

2. If F is a quasi-coherent (resp. locally-free) sheaf of OX-modules, then each of T (F),
∧
F

and Sym(F) are quasi-coherent (resp. locally-free), see [Stacks, Lemma 01CL].

And now back to our interests.
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Definition 3.32: Formal Lie variety.
A pointed sheaf (X, eX) on S is said to be a formal Lie variety iff it satisfies the following:

1. X is ind-infinitesimal, i.e. X = X = lim−→ Infk(X), and Infk(X), viewed as a sheaf in the
fppf topology, is representable for all k ≥ 0;

2. ωX ≃ e∗X
(
Ω1

X/S

)
≃ e∗X

(
Ω1

Infk(X)/S

)
, for any k ∈ N, is locally-free of finite type;

3. Denoting by grinf(X) the unique gradedOS-algebra such that grinfi (X) = gri(Inf
i(X)),

we have an isomorphism

Sym (ωX) grinf(X)∼

induced by the canonical mapping ωX
∼−→ grinf1 (X).

Remark 3.33 ([Mes72, Chapter II, §1]). From this definition it follows that X , locally on S, is
isomorphic to OS [[T1, . . . , Tn]]. In particular, following the assumptions made for the formal
scheme point of view, it grants thatX is given by R[[T1, . . . , Tn]], where S = Spec(R).

Definition 3.34: Formal Lie group.
A formal Lie group over S is a group objectG in the category of formal Lie varieties over S.

In the following we will always assume that a formal Lie groupG is commutative. Moreover, for
these last results, we will assume that our base scheme S is of characteristic p > 0.

Remark 3.35 (Frobenius and Verschiebung). One can generalize the definitions given for fi-
nite commutative group schemes in section 2.5. In fact, looking at how they act on S-points,
these definitions can be generalized to any contravariant functor from Sch/S to Sets. Then one
defines, on any sheaf of groups G, a Frobenius morphism, denoted again by FG : G → G(p),
and a Verschiebung morphism, denoted by VG : G(p) → G. Moreover, as in definition 2.52, we
denote by Fn

G : G→ G(pn) the n-fold composition of the Frobenius morphism.

Definition 3.36.

1. We denote by G[n] := kerFn
G , the kernel of the n-fold composition of the Frobenius

morphism.

2. A sheaf of groupsG on S is said to be of F -torsion iffG = lim−→n∈NG[n].

3. A sheaf of groupsG on S is said to be F -divisible iff FG : G→ G(p) is an epimorphism.

With this in mind we can more easily characterize formal Lie groups over S of characteristic p.

Theorem 3.37 ([Mes72, Chapter II, §2, theorem 2.1.7]). In order for a sheaf of groupsG on S to be
a formal Lie group, it is necessary and sufficient that the following conditions hold:

1. G is of F -torsion;

2. G is F -divisible;

3. for all n,G[n] is a finite, locally free S-group scheme.

For the following result assume that the base scheme S = Spec(A ) is the affine scheme associ-
ated to an admissible ring with ideal of definition I . Assume moreover that I/I2 is of finite type
over A /I and set Sn := Spec(A /In+1).
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Lemma 3.38 ([Mes72, Chapter 2, §4, lemma 4.13]). The natural functor associating to a formal Lie
variety over S a family of formal Lie varieties over Sn is an equivalence of categories. In particular it
induces an equivalence of categories between formal Lie groups onS and the inverse limit of the categories
of formal Lie groups on the various Sns.

Remark 3.39 (Comparison of the two points of view). We can see, thanks to theorem 3.37, re-
mark 3.33, and definition 3.18, that the two definitions of formal Lie group coincide, over S =
Spec(R), whereR is a local admissible ring. In fact from the definition as an fppf sheaf of groups,
we obtain thatG isF -torsion. As a consequence everyG[n], up to base change to the residue field,
satisfies conditions of proposition 2.54, which grants connectedness. Moreover we see thatG is
given by a ring of formal power series, hence it is smooth. For the conversewe recall theorem1.16,
remark 3.14 and theorem 2.58 and then have to argue following [Tat67, proposition 1], see also
[Mes72, Chapter II, §2, theorem 2.1.7] for some more details.

3.3 p-divisible groups
As in the previous section, we will define p-divisible groups from two different points of view:
that of formal schemes and that of fppf sheaves.

Formal scheme point of view

In this section we will follow the construction of [Tat67, §2] and of [Sha86, §6]. In particular we
will see a p-divisible group as a formal group satisfying certain important properties. As before,
sticking to the convention of [Sha86], we will denote by R an admissible local ring (and often
assume that it also has residue characteristic p).

Definition 3.40: p-divisible group.
A p-divisible group over R of height h ∈ N+ is an inductive system

G := (Gv, iv)v∈N ,

satisfying:

1. for each v ∈ N,Gv is a finite, flat and commutative group scheme over R of order pvh;

2. for each v ∈ N, there is an exact sequence

0 Gv Gv+1 Gv+1,
iv pv

where the second map is the multiplication by pv in Gv+1, hence the first is a closed im-
mersion which identifiesGv with the kernel of pv onGv+1.

Remark 3.41. Recalling remark 3.14 we see that the inductive system (Gv, iv)v∈N defines a
formal group

G := lim−→
v∈N

Gv.

Even though this remark allows to associate an object to a p-divisible group, we will mostly work
directly with the inductive system.

As of now the reason behind the name p-divisible is still not clear. The following proposition and
remark will clarify it.
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Proposition 3.42. A p-divisible group overR is a p-torsion commutative formal groupG overR , for
which p : G→ G is an isogeny.

Proof. Since, for all v ∈ N, iv is a monomorphism, the following diagram shows that Gv is the
kernel of pv onGv+2 via the iterated immersion iv+1◦iv . Inductively this holds forGv+t, where
t ≥ 1:

Gv+2 Gv+2 Gv+2

0 Gv Gv+1 Gv+1.

pv p

iv pv

iv+1 iv+1

As a consequenceGv is the kernel of pv onG, henceG is p-torsion (it is lim−→Gv). To simplify the
discussion we introduce the notation iv,t := iv ◦ · · · ◦ iv+t−1 : Gv → Gv+t. Then we analyse
the following diagram to obtain that p is an isogeny:

Gv+t+1 Gv+t+1 Gv+t+1

Gv

Gv+t Gv+t.

pt pv

iv,t+1

iv,tjt,v

pt

iv+t iv+t (3.1)

In fact the big square commutes and condition 2 of the definition of p-divisible group, applied to
Gv+t, implies that pt ◦ iv+t factors through the kernel of pv on Gv+t+1. As seen above this is
Gv , granting the existence of the dashed arrow jt,v . Moreover we obtain the commutativity of
the right triangle by definition. As a consequence, since iv+t is a monomorphism, also the lower
triangle commutes, granting iv,t ◦ jt,v = pt. Then, as also iv,t is a monomorphism, ker jt,v
coincides with the kernel of pt onGv+t, which isGt by the above discussion. Then, by property
1 of p-divisible groups, the order of Gv+t is the product of the orders of Gv and Gt. Then, by
arguments of order, the following is a short exact sequence of abelian S-group schemes

0 Gt Gv+t Gv 0.
iv,t jt,v (3.2)

Let’s remark that these computations do not depend on the chosen t ≥ 1 nor on the chosen v.
Hence the above sequence is exact for all v and t. In particular, fixing t = 1 and letting v vary, we
obtain that p : G → G is an isogeny, i.e. it is onto and has kernel given by a finite group scheme
over S. ■

Remark 3.43. This proposition actually has an inverse. In fact, starting from a p-torsion com-
mutative formal groupG overR , for which p : G→ G is an isogeny, we can recover a p-divisible
group as in definition 3.40. In fact setting Gv := ker pv , as seen in proposition 3.42, and iv the
inclusion of one kernel into the next gives an inductive system. The height h is given by the expo-
nent in the order of ker p, and one checks that the order of ker pv is pvh. FinallyG = lim−→v∈NGv

since it is p-torsion.

Example 3.44.

1. In the case of ordinary abelian groups this definition only allowsGv = (Z/pvZ)h, hence
it just gives rise to the p-divisible group

G = lim−→Gv = (Qp/Zp)
h
.
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2. LetGv := µpv,R be the kernel of multiplication by pv inGm,R . We can form an inductive
system from these objects, which defines the p-divisible group

µp∞ = Gm,R(p) := lim−→
v∈N

Gv,

called the p-divisible group ofGm. In particular it is of height 1.

3. Denote by Z/pvZ the base change to R of the constant group scheme associated to the
group Γ := Z/pvZ, see item 6 of example 2.20. We can form an inductive system from
these objects, defining the p-divisible group

Qp/Zp := lim−→
v∈N

Z/pvZ,

generalizing to the setting of group schemes example of item 1. As the previous one, this
p-divisible group is of height 1.

4. In case we are given ann-dimensional commutative formal Lie groupΓ overR , we clearly
have to require that it is p-divisible, as defined in definition 3.20. Then multiplication by p
is an isogeny. In case, moreover,R has residue characteristic p, one can define a p-divisible
group of height h over R , starting from Γ, by the inductive system

Γ(p) := (Γpv , ipv )v∈N .

In the above Γpv is the kernel of the multiplication by pv in Γ. Then one can prove that
ker p is connected and, since p is an isogeny, it is also finite. By proposition 2.38 this implies
that the order of ker p is a power of p. Then flatness allows us to base change to the residue
field and invoke theorem 2.58, withwhich one can extend this result to ker pv for all v ≥ 1.
It follows that the construction of Γ(p) gives rise to a connected p-divisible group.

5. LetX be an abelian scheme of relative dimension d over S. Denote byX(v) the kernel of
multiplication by pv in X . It is known that X(v) is a finite, flat and commutative group
scheme over S of order p2dv . As a consequence the inductive system (X(v), iv), where
iv is the natural inclusion, gives rise to a p-divisible group, denoted by X(p), of height
2d. We callX(p) the p-divisible group of the abelian scheme S. (More details about this
construction can be found at [Sha86, §6].)

fppf sheaves point of view

As before, in the following part we will write group over S, or S-group, to mean an fppf sheaf
of commutative groups on the site (Sch/S)fppf . Again, we will add a modifier adjective, such
as flat, finite or locally-free, to indicate that the S-group in question is representable. Moreover,
following [Mes72], we will call p-divisible groups Barsotti-Tate groups.

Lemma 3.45 ([Mes72, Chapter I, §1, lemma 1.1]). Let G be an S-group such that pnG = 0. The
following conditions are equivalent:

1. G is a flat Z/pnZ-module,

2. ker(pn−i) = im(pi), for i = 0, . . . , n.
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Definition 3.46: Truncated Barsotti-Tate group of level n.
Consider n ≥ 2, a truncated Barsotti-Tate group of level n is an S-groupG such that

1. G is a finite and locally-free S-group and

2. G is killed by pn and satisfies the equivalent conditions of lemma 3.45.

Definition 3.47.
IfG is a group, wewriteG(n) for the kernel of pn. Then, ifG is killed by pn, wewriteG = G(n).

Lemma 3.48 ([Mes72, Chapter I, §1, lemma 1.5]).

1. IfG(n) is a flat Z/pnZ-module, thenG(n) is a finite, locally-free group scheme iffG(1) is. In
such case all theG(i), for 1 ≤ i ≤ n, are also finite and locally-free.

2. IfG(n) is finite and locally-free, then

pi : G(n) G(n− i)

is an epimorphism iff it is faithfully flat.

Definition 3.49: p-torsion and p-divisible groups.
Let S be a scheme andG be an S-group. Denote byG(n) the kernel of the multiplication by pn
on G. The group G is said to be of p-torsion iff G = lim−→n∈NG(n). Similarly G is said to be
p-divisible iff p : G→ G is an epimorphism.

Definition 3.50: Barsotti-Tate group.
An S groupG is called Barsotti-Tate iff it satisfies

1. G is of p-torsion;

2. G is p-divisible;

3. G(1) is a finite, locally-free S-group.

We denote byBT/S the full subcategory ofGr/S whose objects are Barsotti-Tate groups over S.

Remark 3.51. The category BT/S is not abelian: it does not admit kernels. In fact the kernel of
the morphism p : G→ G of multiplication by pmust be killed by p, hence cannot be a Barsotti-
Tate group (unlessG = 0).

Remark 3.52 ([Mes72, Chpater I, §2.4.1]). Let f : S′ → S be an arbitrary morphism of schemes.
ConsiderBT/S as a subcategory of the category of sheaves of abelian groups on (Sch/S)fppf and
define, as in definition 1.21, the pullback functor between the appropriate categories of sheaves.
Then, for anyG ∈ BT/S, the pullback f−1G is a Barsotti-Tate group on S′. Moreover we call
lift ofG ∈ BT/S′ via f anyH ∈ BT/S such that f−1H ≃ G.

Lemma 3.53 ([Mes72, Chapter II, §3, lemma 3.3.18]). Let p be locally nilpotent on S and G be a
Barsotti-Tate group on S. ThenG := lim−→k∈N Infk(G) is a formal Lie group.

Definition 3.54: Conormal sheaf of a Barsotti-Tate group.
Given a Barsotti-Tate group G over a scheme S, on which p is locally nilpotent, we define the
conormal sheaf ofG by ωG := ωG where, as above,G := lim−→k

Infk(G).

Remark 3.55 ([Mes72, Chapter II, §3, remark 3.3.20]). In the above hypothesis, thanks to defin-
ition 3.32, the sheaf ωG is locally-free of finite type. Moreover, locally on S, ωG = ωG(m) form
sufficiently large. Finally, if pN kills S, we have ωG = ωG(N).
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As in the section regarding formal Lie varieties, for the following result we will consider the
base scheme S = Spec(A ), where A is an admissible ring with ideal of definition I . Assume
moreover that I/I2 is of finite type over A /I and set Sn := Spec(A /In+1).

Lemma 3.56 ([Mes72, Chapter 2, §4, lemma 4.16]). : The natural functor associating to a Barsotti-
Tate group over S a family of Barsotti-Tate groups over Sn is an equivalence of categories. Moreover
this equivalence of categories is compatible with extensions.

Remark 3.57 (Comparison of the two points of view). We will follow [Mes72, Chapter I, §2,
remark 2.3 and Chapter II, §2, theorem 2.1.7] to show that the two points of view define the same
objects overS = Spec(R), for an admissible local ringR . Let’s start by consideringG ∈ BT/S.
Let’s denote by iv,t : G(v)→ G(v + t) the natural inclusion morphisms. By definition we have
G(v) = G(v + t)(v) for all t ≥ 1. Then, denoting by iv := iv,1, this means that (Gv, iv)v∈N
is an inductive system. Moreover it also means thatG(v) is the kernel of multiplication by pv on
Gv+t for all t. As a consequence we obtain that the following sequence is exact:

0 Gv Gv+1 Gv+1.
iv pv

Hence (Gv, iv)v∈N satisfies condition 2 of definition 3.40. Then, sinceG is p-divisible, i.e. mul-
tiplication by p is an epimorphism on G we have that, for any 0 ≤ i ≤ v, pv−i induces an
epimorphismG(v) ↠ G(i). Combining this with the above remark we obtain the exactness of

0 G(v − i) G(v) G(i) 0.
iv−i,i pv−i

(3.3)

From the theory of finite group schemes over a field one obtains that the rank of the fiber of
G(1) at a point s ∈ S is of the form ph(s) for a function h which is locally constant on S. Then,
from equation (3.3) and multiplicativity of ranks in short exact sequences, see proposition 2.24,
we obtain that the rank of the fiber ofG(n) at s is pnh(s). As a consequence our inductive system
satisfies also 1 of definition 3.40.

Starting from a p-divisible group (Gv, iv)v∈N, instead, we set G := lim−→v∈NGv and invoke
proposition 3.42 to conclude thatG ∈ BT/S.

To end this section we will state a result which relates the concepts introduced in the last couple
of sections: that of formal Lie group and of p-divisible group.

Proposition 3.58 ([Tat67, §2, proposition 1]). Let R be a complete Noetherian local ring whose
residue field k is of characteristic p > 0. Then the functor Γ 7→ Γ(p), constructed as in item 4 of
example 3.44, is an equivalence of categories between the category of p-divisible commutative formal Lie
groups over R and the category of connected p-divisible groups over R .

3.4 Cartier duality
In this section we want to extend the concept of duality introduced in section 2.4 to p-divisible
groups. We will do so in the setting of formal schemes, i.e. viewing a p-divisible group as an
inductive system of finite, flat and commutative group schemes. In fact we will follow [Sha86, §6]
and [Tat67, §2.3] and, again, R will denote an admissible local ring.

Remark 3.59. Let’s notice that for t = 1, thanks to remark 2.43, equation (3.2) dualizes to the
exact sequence

0 GD
v Gv+1 G1 0.

jDv iDv
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Moreover we see that
(
GD

v , j
D
v

)
v∈N defines an inductive system, by construction of jv (using the

universal property defining it). Then, still by remark 2.43, we obtain that it satisfies condition
1 of definition 3.40. Moreover, from equation (3.2), we read that jv = coker iv , which also
implies that jv is an epimorphism. As a consequence we obtain that coker iv = coker iv ◦ jv =
coker (p : Gv+1 → Gv+1), where the last equality holds thanks to commutativity of the lower
triangle in equation (3.1). But then, since duality is exact, this implies that the inductive system
satisfies also property 2 of definition 3.40, hence it defines a p-divisible group.

Definition 3.60: Cartier dual of a p-divisible group.
LetG := (Gv, iv)v∈N be a p-divisible group overR . LetGD :=

(
GD

v , j
D
v

)
v∈N be the inductive

system defined in remark 3.59. This last inductive system defines a p-divisible group over R
which is called the Cartier dual ofG.

Remark 3.61. By theorem 2.42, for finite commutative group scheme, the formation of Cartier
duals commutes with base change. Since we see a p-divisible group as an inductive limit of fi-
nite, flat and commutative group schemes, this also means that taking duals of p-divisible groups
commutes with base change.

Example 3.62. Borrowing from example 3.44 we can notice that Qp/Zp is dual to Gm(p) and
viceversa. In fact, by example 2.46, we know that Z/pnZ is dual to µpn for all n ∈ N.

It now makes sense to introduce one more definition for p-divisible groups, that of dimension.

Remark 3.63. In the case of p-divisible groups over R , for each v ∈ N, one obtains the exact
connected-étale sequence

0 G0
v Gv Gét

v 0.

Moreover one can notice that the inductive system G0 :=
(
G0

v, i
0
v

)
v∈N, where i

0
v := iv|G0

v
,

defines a p-divisible group. Then theorem 3.17 gives a short exact sequence in which the first
term, G0, is a connected p-divisible group. By proposition 3.58 we see that G0 = Spf(A ), for
A = R[[X1, . . . , Xn]] the ring of formal power series in n variables.

Definition 3.64: Dimension of a p-divisible group.
LetG := (Gv, iv)v∈N be a p-divisible group over R . Consider the connected-étale sequence

0 G0 G Gét 0

obtained by theorem 3.17. Thanks to remark 3.63 we see that G0 = Spf(A ), where A =
R[[X1, . . . , Xn]]. We define n to be the dimension of the p-divisible groupG.

Proposition 3.65 ([Tat67, §2.3, proposition 3]). Let G be a p-divisible group over R and GD its
dual p-divisible group. Denote by n and nD their respective dimensions. Then the heights of the two
p-divisible groups coincide and the common value, h, satisfies

h = n+ nD.

3.5 Tate Modules
In this section we will introduce the Tate module associated to a p-divisible group. This is one of
the central objects which will play a role in the comparison morphism. In fact, as stated in the in-
troduction, this object, in the context of abelian varieties, is the dual of the first étale cohomology
group.
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Then, for this section, we will fix the following notation. Let K/Qp be a finite extension
and denote by k := OK/πOK the residue field, where π is a uniformizer of K . Let L be the
completion of an algebraic extension of K and, as usual, OL be the ring of integers of L. In
particular let’s denote byK a fixed algebraic closure ofK , and byGK = Gal

(
K/K

)
the absolute

Galois group ofK . Let, finally,G := (Gv, iv)v∈N be a Barsotti-Tate group overOK .

Definition 3.66.
We define the group of points ofG with values inOL as

G(OL) := lim←−
i∈N

G(OL/m
iOL),

wherem = πOK is the maximal ideal ofOK and where

G(OL/m
iOL) = lim−→

v∈N
Gv(OL/m

iOL).

Remark 3.67. LetG be a p-divisible group overOK as in definition 3.40. ThenGv is finite and
flat overOK , for all v ∈ N. In particular this means that it is proper overOK , hence that we can
apply the valuative criterion of properness, see [Har77, Chapter II, theorem4.7]. As a consequence
we see that, for every v ∈ N, we haveGv(L) ≃ Gv(OL). Notice, moreover, that givenM/K an
infinite algebraic extension andL the p-acid completion ofM , thenOL = lim←−n∈NOM/m

nOM

and, for each n, we have
OL/m

nOL = OM/m
nOM .

As a consequence, by definition 3.66, we see that G(L) = G(OL) = G(OM ) = G(M). In
particular the above holds forM = K and L = CK .

Definition 3.68: Tate module.
To the Barsotti-Tate groupG ∈ BT/OK we associate the group

Tp(G) := lim←−
v∈N

Gv(K),

called the Tate module ofG. Here notice that the projective limit is taken over the maps

jv(K) : Gv(K) Gv−1(K),

where jv corresponds to j1,v constructed in equation (3.1), from proposition 3.42.

Remark 3.69. The module Tp(G) is a free Zp-module of rank h, where h is the height of G.
Moreover it is endowed with a continuous action of GK . To see how it acts, notice that

Tp(G) = lim←−
v∈N

Gv(K) = lim←−
v∈N

HomSch/OK

(
Spec(K), Gv

)
≃ lim−→

v∈N
HomOK -Alg

(
Av,K

)
,

whereGv = Spec(Av) is affine, being finite overOK . Here the action of GK is the usual action
on hom groups, i.e. it is given by

(g · f) (x) = g · f(x)

for all g ∈ GK , x ∈ Av and f ∈ HomOK -Alg
(
Av,K

)
.

Proposition 3.70. ConsiderG ∈ BT/OK . Then

Tp(G) ≃ HomBT/OK

(
Qp/Zp, GOK

)
,

whereQp/Zp := lim−→v∈N Z/pnZ, as constructed in item 3 of example 3.44 with R = OK .
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Proof. For this proof we will recall definition 3.40 and write G = lim−→v
Gv . The proof consists

of the following isomorphisms.

Tp(G) = lim←−
v∈N

Gv(K)
1≃ lim←−

v∈N
Gv,OK

(OK)
2≃ lim←−

v∈N
HomGr/OK

(
Z/pvZ, Gv,OK

)
3≃ HomBT/OK

(
lim−→
v∈N

Z/pvZ, GOK

)
≃ HomBT/OK

(
Qp/Zp, GOK

)
.

Let’s explain why these isomorphisms hold. Isomorphism 1 is just the valuative criterion of pro-
perness, (see [Har77, Chapter II, theorem 4.7]), as seen in remark 3.67. Isomorphism 2 follows
from the fact that Gv is a flat Z/pvZ-module, by definition 3.50 and lemmas 3.45 and 3.48. Fi-
nally isomorphism 3 holds sinceGv is exactly the subgroup ofG of pv-torsion. ■

Notation 3.71: Tate twist.
Let us define a GK-module to be aZp-module endowed with an action of GK . Letχ : GK → Z×

p

denote the cyclotomic character, i.e. the map such that, for all ζpn ∈ K primitive pnth roots of
unity and all g ∈ GK ,

g(ζpn) = ζ
χ(g)
pn .

Wedefine theGK-moduleZp(1) to beZp onwhichGK actsmultiplicatively byχ. More explicitly
the GK-action on Zp(1) is given by

g · x := χ(g)x

for all x ∈ Zp(1) and all g ∈ GK . Let’s now denote Zp(−1) := HomZp-Mod (Zp(1),Zp),
where the action is the usual action on the hom group. More explicitly it is given, for all f ∈
HomZp-Mod (Zp(1),Zp) and g ∈ GK , by

(g · f)(x) := f(g−1x),

since the action of GK on Zp is trivial. Then, for all n ∈ Z, we define the following modules

Zp(n) :=


Zp(1)

⊗n if n > 0,

Zp if n = 0,

Zp(−1)⊗−n if n < 0.

Here by Zp(1)
⊗n we mean the n-fold tensor product of Zp(1) with itself. Then it is clear that

Zp(n) = HomZp-Mod (Zp(−n),Zp) for all n < 0. More explicitly we see that Zp(n) coincides,
as a module, with Zp, but the action of GK has been twisted by an appropriate power of the
cyclotomic character, i.e.

g · x = (χ(g))
n
x.

With this notation in mind we can twist the action on any GK-moduleM . To do so we define

M(n) :=M ⊗Zp
Zp(n),

where the action on the tensor product is given by the diagonal one. Here notice that, since Zp is
clearly free and of finite rank as a Zp-module, for n < 0 we have

M(n) ≃ HomZp-Mod (Zp(−n),M) .

To conclude we can give an explicit description of the twisted action onM(n). It is given, for all
m ∈M and all g ∈ GK , by

g ∗m = (χ(g))n(g ·m),

where g∗m denotes the newmodified action, whereas g ·m the old one onM and (χ(g))n(g ·m)
is just scalar multiplication.
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Proposition 3.72. LetG ∈ BT/OK , then

Tp(G
D) ≃ Tp(G)∨(1).

Proof. We need to notice that

Tp(G
D) = lim←−

v∈N
GD

v (K)
1≃ lim←−

v∈N
HomGp/K

(
Gv,K ,Gm,K

)
2≃ lim←−

v∈N
HomGp/K

(
Gv,K ,Gm(p)K

)
≃ HomGp/K (GK ,Gm(p)K)

3≃ HomGp

(
G(K),Gm(p)(K)

) 4≃ HomGp

(
G(K),Zp(1)

)
5≃ HomGp

(
G(K),Zp

)
(1) = Tp(G)

∨(1).

Let’s explain why these isomorphisms hold. Isomorphism 1 holds by remark 2.45, whereas iso-
morphism 2 holds since the image of Gv sits in the pv-torsion points of Gm. Isomorphism 3
holds since, by proposition 2.38, our group schemes are étale, being over a field of character-
istic 0. Moreover, by theorem 2.34, there is an equivalence of categories between étale group
schemes over a field and finite groups with an action of the absolute Galois group of the field,
which in our case is trivial. Since the equivalence is given taking K-points, the isomorphism
follows. For isomorphism 4 notice that Gm(p)(K) consists of all pnth roots of unity in K , on
which GK acts via the cyclotomic character. As a group this is isomorphic to Zp (viewed in mul-
tiplicative notation), though the action of GK differs, since it is trivial on Zp (being contained
in K). Then it is clear that Gm(p)(K) ≃ Zp(1). Finally isomorphism 5 holds, since the ac-
tion of GK on HomGp

(
G(K),Zp

)
is given by (g · f)(x) = gf(g−1x) for all g ∈ GK , f ∈

HomGp

(
G(K),Zp

)
and x ∈ G(K). ■

4 Divided powers, exponentials and crystals
The aim of this section is to introduce the crystalline site on a scheme, on which we will define
the notion of crystal. In order to do so we will need to develop some theory for extensions and
prolongations, whichwill be studied via the exponential map. To define this mapwe need divided
power structures, which allow to make sense of exponentials even when expressions like xn/n!
are not defined, such as when n! is not invertible.

4.1 Divided powers
Definition 4.1: Ideal with divided powers.
LetA be a ring, and I ◁A an ideal ofA. We say that I is equippedwith divided powers, equivalently
it is given a divided power structure, iff it is givenwith a family ofmaps {γn}n≥1, whereγn : I → A
for all n ∈ N, satisfying, for all λ ∈ A and x, y ∈ I , the following conditions:

1. γ0(x) = 1, γ1(x) = x and γn(x) ∈ I for all n ≥ 2;

2. γn(λx) = λnγn(x);

3. γn(x) · γm(x) = (m+n)!
m!n! γm+n(x);

4. γn(x+ y) =
∑n

i=0 γn−i(x)γi(y);

5. γm(γn(x)) =
(mn)!

(n!)mm!γmn(x).
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Given such a system, we say that (I, γ) is an ideal with divided powers, where we denoted γ :=
{γn}n∈N. Moreover we might sometimes use the notation x[n] := γn(x). Finally, to stress the
ring we are working in, we might write (A, I, γ) to denote I ◁ A an ideal with divided powers
given by γ, and we will refer to it as a ring with divided powers or as a divided power ring. Borrowing
from the literature wemay use the shorter P.D. ring (analogously P.D. structure or P.D. ideal), where
P.D. stands for "puissances divisées", French for "divided powers".

Definition 4.2: Nilpotent divided powers.
Given (A, I, γ) as before, we say that the divided powers are nilpotent iff there is anN ∈ N such
that, for all i1 + · · ·+ ik ≥ N , the ideal generated by elements of the form

γi1(x1) · · · · · γik(xk),

for all x1, . . . , xk ∈ I , is zero.

Remark 4.3. Let’s now notice the following immediate consequences of the definitions.

1. Axiom 2 of definition 4.1 implies that γn(0) = 0 for all n ∈ N.

2. Via an easy induction argument, axioms 1 and 3 tell us that n!γn(x) = xn.

3. Reasoning by induction one can show that

(mn)!

(n!)
m
m!

=

m−1∏
k=1

(kn+ n− 1)!

(kn)!(n− 1)!
,

which implies that it is an integer. In fact it can be interpreted as the number of partitions
of a set withmn elements intom subsets of n elements each.

4. In definition 4.2, if we take k = N and i1 = · · · = iN = 1, then, thanks to axiom 1 of
definition 4.1, the ideal I is nilpotent. In particular IN = (0).

Example 4.4.

1. Given any ringA, (0) is an ideal with divided powers, with γn(0) = 0 for all n ∈ N. This
is called the trivial divided power structure.

2. If A is a Q-algebra, every ideal has a unique divided power structure, given by xn/n! =:
γn(x).

3. Suppose that (m− 1)! is invertible in A and Im = (0). Then I has a (not necessarily
unique) divided power structure, given by

x[n] :=

{
xn

n! if n < m,

0 if n ≥ m.

In particular, whenever I2 = 0, we can give I a divided power structure by settingγn(x) =
0 for all x ∈ I and all n ≥ 2.

4. IfV is a discrete valuation ring of unequal characteristic p and uniformizer π, we canwrite
p = uπe, where u is an invertible element and e is the absolute ramification index of V .
Then (π) has a divided power structure iff e ≤ p − 1. In such case, since V is an integral
domain, γ is unique, determined by xn/n! =: γn(x). In fact it is known that, denoted by
νp the valuation of Zp normalized to have value group Z, then

νp(n!) =
n− sp(n)
p− 1

,
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where sp(n) := a0+ · · ·+ak is the sum of the digits ofn in base p. In other words it is the
sum of the coefficients of n = a0 + · · ·+ akp

k , the p-adic expansion of n in Zp. Then, in
order for all γn to have values in (π)we need that ν(γn(x)) > 0 for all x ∈ (π) and all n.
By axiom 2 of definition 4.1 it is enough to check it for π. Then, assuming ν is normalized
to have values in Z, we have

ν(γn(π)) = ν(πn/n!) = n− e · νp(n!) = n · p− 1− e
p− 1

+ e · sp(n)
p− 1

.

It is clear that ν(γn(π)) > 0 for all n ∈ N iff p− 1− e ≥ 0, i.e. iff e ≤ p− 1.

Since divided power structures need not exist, nor be unique, we are pushed to introduce the
following definitions.

Definition 4.5: Morphism of divided power rings.
A morphism of divided power rings, denoted by

u : (A, I, γ) (B, J, δ) ,

is a ring homomorphismu : A→ B such thatu(I) ⊂ J andu(γn(x)) = δn(u(x)) for allx ∈ I
and all n ∈ N.

Definition 4.6.
Given a divided power ring (A, I, γ) and a ring homomorphism f : A → B, we say that γ
extends toB iff there exists a divided power structure γ on IB such that

f : (A, I, γ) (B, IB, γ)

is a morphism of divided power rings.

Definition 4.7: Sub-P.D. ideal.
Let (A, I, γ) be a P.D. ring and J ⊂ I an ideal of A. We say that J is a sub-P.D. ideal of I iff
γn(x) ∈ J for all x ∈ J and all n ≥ 1.

We can check the property of being a sub-P.D. ideal only on generators, thanks to the following.

Lemma 4.8 ([BO78, §3, lemma 3.6]). Let (A, I, γ) be a P.D. ring and J ⊂ I the ideal ofA generated
by a subset S ⊂ I . Then J is a sub-P.D. ideal of I iff γn(s) ∈ J for all s ∈ S and all n ≥ 1.

Let’s now state a few criteria which allow to extend an existing divided power structure.

Lemma 4.9 ([BO78, §3, lemma 3.5]). Let (A, I, γ) be a P.D. ring and J ◁ A an ideal. Then there is
a P.D. Structure γ (necessarily unique) on I = (I + J)/J such that (A, I, γ) →

(
A/J, I, γ

)
is a

morphism of divided power rings iff J ∩ I is a sub-P.D. ideal of I .

Lemma 4.10 ([BO78, §3]). Let {(Ai, Ii, γi)i}i be a direct system of rings with divided powers. Denote
by A := lim−→i

Ai and I := lim−→i
Ii. Then there exists a unique divided powers structure γ on I such

that, for all i, the morphism (Ai, Ii, γi)→ (A, I, γ) is a divided power morphism.

Proposition 4.11 ([BO78, §3, proposition 3.12]). Suppose that (I, γ) and (J, δ) are P.D. ideals of a
ring A. Suppose that I ∩ J is a sub-P.D. ideal of both I and J and that γ and δ agree on I ∩ J . Then
there is a unique P.D. structure on I + J such that both I and J are sub-P.D. ideals of I + J .
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Lemma 4.12 ([Stacks, Lemma 07H1]). Let (A, I, γ) be a divided power ring and A → B a ring
homomorphism. If γ extends to B, then it extends uniquely. Assume moreover that any of the following
conditions holds

1. IB = 0,

2. I is principal or

3. A→ B is a flat morphism,

then γ extends toB.

We will also need to work with p-adic completions, for which we will need the following.

Lemma 4.13 ([Stacks, Lemma 07KD]). Let (A, I, γ) be a divided power ring and assume that p is
nilpotent onA/I . Then

1. the p-adic completion Â = lim←−n∈NA/p
nA surjects ontoA/I ,

2. the kernel of this map is the p-adic completion Î of I and

3. each γn is continuous for the p-adic topology and extends to a continuous map γ̂n : Î → Î ,
defining a divided power structure on Î .

Let’s now introduce the analogous of the symmetric algebra, first, and of the formal completion,
later, in the context of divided powers.

Theorem 4.14 ([BO78, §3, theorem 3.9]). LetM be anA-module. Then there exists a divided power
A-algebra

(
ΓA(M),Γ+

A(M), γ
)
and anA-linear mapφ : M → Γ+

A(M) with the following univer-
sal property: given any other divided power A-algebra (B, J, δ) and any A-linear map ψ : M → J ,
then there is a unique divided power morphism ψ : ΓA(M)→ B such that ψ ◦ φ = ψ. Moreover the
divided powerA-algebra ΓA(M) has the following properties.

1. Denote by x[1] := φ(x) and x[n] := γn(φ(x)) ∈ Γn
A(M), following notation of definition 4.1.

Then theA-module Γn
A(M) is generated by{

x
[q1]
1 · · ·x[qk]k

∣∣∣ q1 + · · ·+ qk = n
}
.

Moreover, if {xi}i∈I is a basis forM , then {x[n]i }I∈I is a basis for Γn
A(M), for all n ≥ 1.

2. ΓA(M) is a graded algebra, withΓ0
A(M) = A,Γ1

A(M) =M andΓ+
A(M) = ⊕i≥1Γ

i
A(M).

3. The functorM 7→ ΓA(M) is compatible with:

(a) base change: given anyA-algebraA′, we have

ΓA′(M ⊗A A
′) ≃ A′ ⊗A ΓA(M),

(b) filtered direct limits: given any directed system ofA-modules {Mλ}λ∈Λ, we have

ΓA(lim−→
λ

Mλ) ≃ lim−→
λ

ΓA(Mλ),

(c) coproducts: given any pair ofA-modulesM,N , we have

ΓA(M ⊕N) ≃ ΓA(M)⊗A ΓA(N).
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To make notation cleaner, when the baseA is clear, we will write Γ(M) for ΓA(M).

Remark 4.15 ([BO78, Appendix A]). Even though we are not going to prove the above theorem,
we will give the explicit construction of the algebra ΓA(M). Fixed an A-moduleM we define
the polynomialA-algebra

GA(M) := A[{(x, n) | x ∈M,n ∈ N}]

in the indeterminates {(x, n)}(x,n)∈M×N. We define the ideal IA(M) of GA(M) as the ideal
generated by the following four type of elements, where x, y ∈ M , λ ∈ A and n,m, i, j ∈ N
range over all elements:

1. (x, 0)− 1,

2. (λx, n)− λn (x, n),

3. (x, n) (x,m)− (n+m)!
n!m! (x, n+m) and

4. (x+ y, n)−
∑

i+j=n (x, i) (y, j).

Then we set ΓA(M) := GA(M)/IA(M) and, for each x ∈ M , we denote by x[n] the im-
age of (x, n) in ΓA(M). Notice that GA(M) becomes a graded A-algebra giving to (x, n) de-
gree n. With this grading IA(M) is a homogeneous ideal, so that ΓA(M) inherits the grading
of GA(M). In particular x[n] has grade n. Let’s denote by Γi

A(M) the submodule of ΓA(M)
of homogeneous elements of degree i. It can be showed that the divided power structure on
Γ+
A(M) :=

⊕
i>0 Γ

i
A(M) is given by γn(x[1]) := x[n] for all x ∈M and n ∈ N.

There is a nice interpretation of the dual of the above construction in terms of the symmetric
algebra (and viceversa). It is used throughout the construction of the exponential map in [Mes72],
so we decided to include it even though no further use of it is made in this document.

Proposition 4.16 ([BO78, AppendixA, propositionA10]). LetM be anA-module. For everyn ∈ N
there is a natural map of A-modules Symn(M∨) → Γn

A(M)∨, where ∨ denotes the dual A-module
construction and Symn(M) denotes the submodule of homogeneous elements of degree n of Sym(M).
If, in particular,M is projective of finite rank, the above map is an isomorphism.

Remark 4.17. Notice that elements of Symn(M∨) can be viewed as polynomial functions on
M of weight n. More in general Sym(M∨) is a ring of polynomial functions onM . Moreover
the above isomorphism induces an isomorphism of the graded modules

Sym(M∨)
⊕

n∈N Γn
A(M)∨.∼

Passing to duals we obtain the following isomorphism

Sym(M∨)∨ ≃
(⊕

n∈N
Γn
A(M)∨

)∨

≃ HomA

(⊕
n∈N

Γn
A(M)∨, A

)
≃
∏
n∈N

HomA (Γn
A(M)∨, A) ≃

∏
n∈N

Γn
A(M) =: Γ̂A(M),

where Γ̂A(M) denotes the completion of ΓA(M) with respect to the ideal Γ+
A(M).
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Theorem 4.18 ([BO78, §3, theorem 3.19], divided power envelope). Let (A, I, γ) be a ring with
divided powers,B anA-algebra and J ◁B an ideal. There exists aB-algebraDB,γ(J) with a divided
power ideal

(
J, [ · ]

)
, such that JDB,γ ⊂ J , the divided power structure [ · ] is compatible with γ,

and which satisfies the following universal property: for anyB-algebra C containing an idealK which
contains JC and has a divided power structure δ compatible with γ, there is a unique divided power
morphism

(
DB,γ , J, [ · ]

)
→ (C,K, δ) making the following diagram commute(

DB,γ , J, [ · ]
)

(B, J) (C,K, δ) .

(A, I, γ)

Remark 4.19. As before we will not prove the theorem, but limit ourselves to explicitly write
the construction for the divided power envelope. One starts by replacing J with J + IB, so that
I ⊂ J . Then, denoting by φ : J → Γ1

B(J) the universal map of theorem 4.14 and by f the map
A→ B, we define the ideal J ◁ ΓB(J) whose generators are given by

1. φ(x)− x for all x ∈ J and

2. φ(f(y))[n] − φ(f(γn(y))) for y ∈ I .

After checking some compatibility conditions, one finds thatDB,γ := ΓB(J)/J has an induced
divided power structure on the ideal J , induced by Γ+

B(J) on the quotient, which satisfies the
desired universal property.

The point of introducing all of these definitions is to allow one to define the following inverse
maps, of which we will construct some generalizations later on.

Definition 4.20.
Let (A, I, γ) be a nilpotent divided power ring. Then we can define two maps

exp: I (1 + I)
×

log : (1 + I)
×

I,

given by exp(x) :=
∑

n≥0 γn(x) and log(1+x) :=
∑

n≥1(−1)n−1 (n− 1)!γn(x). Let’s notice
that thesemaps arewell defined. In fact we assumed that divided powers on I are nilpotent, hence
that γn = 0 for n big enough, which implies that these are actually finite sums. Then, as outlined
in [Mes72, Chapter III, §1.6], one checks that these maps are inverses to each other by reducing
to the universal case Γ̂Z(Z).

Remark 4.21. Notice that lemma 4.12 allows one, starting from a divided power ring (A, I, γ),
to give a structure of divided power ring toAp for all p ∈ Spec(A) =: S, since localization is a
flat morphism. Moreover the structures we defined above are all compatible with localization, by
construction. This pushes us to expand the notion of divided powers to the sheaf OS . Actually
one can be even more general, giving the following definition.

Definition 4.22: Scheme with divided powers.
Let S be a scheme and I a quasi-coherent sheaf of ideals ofOS . A divided power structure on I is
the data, for all U ⊂ S open, of divided powers γ(U) of Γ(U, I) in which restriction maps are
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given by morphisms of divided power rings. Then we will call one triple (S, I, γ) a scheme with
divided powers, or equivalently a divided power scheme or a P.D. scheme.

Let now (S, I, γ) and (S′, I ′, γ′) be schemes with divided powers. A morphism of divided
power schemes

f : (S, I, γ) (S′, I ′, γ′)

is a morphism of schemes f : S → S′ such that f−1(I ′)OS ⊂ I and, for all U ′ ⊂ S′ open,

f#(U ′) : (OS′(U ′), I ′(U ′), γ′(U ′))
(
OS(f

−1U ′), I(f−1U ′), γ(f−1U ′)
)

is a morphism of divided power rings.

Definition 4.23: Locally nilpotent sheaf of ideals with divided powers.
We say that the divided powers on the sheaf of ideals I ofOS are locally nilpotent iff, locally on S,
they satisfy conditions in definition 4.2.

In order to generalize the other constructions of the section we need the following result.

Proposition 4.24 ([BO78, Remark 3.20 and proposition 3.21]). Let (A, I, γ) be a divided power
ring,B anA-algebra with J an ideal ofB.

1. Consider a surjective morphism of divided power rings (A, I, γ)→ (A′, I ′, γ′) ,B′ := A′⊗A

B and J ′ = JB′. Then the following canonical map is an isomorphism

A′ ⊗A DB,γ(J) DB′,γ′(J ′).∼

2. Suppose J ◁ A is an ideal andB′ is aB-algebra. Then there is a natural map

DB,γ(J)⊗B B′ DB′,γ(JB
′),

which is an isomorphism ifB′ is a flatB-algebra.

Remark 4.25. Finally one can generalize the construction of theorems 4.14 and 4.18 to the case
ofM an quasi-coherentOS-algebra. Indeed the divided power algebra Γ(M) is defined as the
sheaf associated to the presheaf U 7→ ΓOS(U)(M(U)).

For the divided power envelope let’s consider the following situation. Take a closed immer-
sion of schemes X → Y , with a morphism Y → S, where S is equipped with a structure of
divided powers via γ. Then, one defines the divided power envelopeDX,γ(Y ), to be the scheme
corresponding to the divided power envelope of X in Y , compatible with γ. More explicitly
DX,γ(Y ) is locally given by the spectrum of the divided power envelope of OY at the ideal de-
finingX , compatible with γ. As already remarked we can carry out this construction thanks to
proposition 4.24.

4.2 Cospec and Lie algebras
The aim of the following section is to give some vocabulary to be able to work with exponentials,
in a more general context than the previous section, and to introduce the construction of Lie
algebra. The notation of this section will follow that of [Mes72, Capther III]. This means that it
might not be consistent with our previous exposition.
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Definition 4.26: Quasi-coherent (co-)algebra.
Let S be a scheme.

1. We say that U is anOS-algebra iff it is anOS-module which is also endowed with anOS-
algebra structure.

2. We say thatU is anOS co-algebra iff it is anOS-module, endowed with morphisms ofOS-
modules ∆: U → U ⊗OS

U and η : U → OS satisfying the properties of Hopf algebra
structure morphisms, as defined in definition 2.12.

3. Let σ : U ⊗U → U ⊗U be the map which, on sections, acts as s⊗ t 7→ t⊗ s. We say that
anOS co-algebra U is co-commutative iff σ ◦∆ = ∆.

If, moreover, the (co-)algebra U is quasi-coherent as an OS-module, we say that it is a quasi-
coherentOS (co-)algebra.

Remark 4.27. The definition ofOS co-algebra is the categorical dual to that ofOS-algebra. In
particular, given a finite locally-free OS-module A, we can define its dual OS-module A∨ :=
HomOS

(A,OS), defined as in definition 4.31, which is again a finite locally-free OS-module.
Then, if A is given an OS-algebra structure, following remark 2.40, we can endow A∨ with an
OS co-algebra structure (here again the hypothesis of local freeness and finiteness are of vital
importance). Vice-versa, given a finite locally-freeOS co-algebra B, its dualOS-module B∨ can
be given anOS-algebra structure.

Notation 4.28.
In order to stay consistent with [Mes72] we will use the following notation. Let S be a scheme,
U anOS-module and S′ a scheme, with a morphism f : S′ → S. We denote the pullback of U
along f by

US′ := f∗U = f−1U ⊗f−1OS
OS′ ,

where f−1U is the usual inverse image of sheaves and f−1OS → OS′ is defined from f#.

Definition 4.29.
Let S be a scheme and U a co-commutativeOS co-algebra. We define the functor

Cospec(U) : Sch/S Sets

S′ {y ∈ Γ(S′,US′) | η(y) = 1,∆(y) = y ⊗ y} .

Remark 4.30 ([Mes72, Chapter 3, §2.1]). The functorCospec(U) is a sheaf for the fpqc topology
for any co-commutativeOS co-algebra U . As a consequence we obtain a covariant functor U 7→
Cospec(U) from the category of co-commutative OS co-algebras to that of fpqc sheaves on S.
Moreover this functor is compatible with inverse images.

Let’s now investigate the relation betweenCospec and Spec. We need some preliminary defini-
tions first.

Definition 4.31: Internal hom ofOX-modules.
LetX be a scheme, andF ,G be twoOX-modules. We define their internal hom as

HomOX -Mod (F ,G) : Op(X)op OX-Mod

U HomOX |U -Mod (F|U , G|U ) ,

which is a sheaf of abelian groups (see [Stacks, Section 00AK]). Moreover it carries anOX-module
structure given as follows. Fixed any U ⊂ X open, φ ∈ HomOX |U -Mod (F|U , G|U ) and
f ∈ OX(U), we can define fφ ∈ HomOX |U -Mod (F|U , G|U ) either by precomposing φ with
multiplication by f on F|U or by postcomposing φ with multiplication by f on G|U .
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Remark 4.32. We start out giving the following useful identification. Let U be a quasi-coherent
OS co-algebra, then we have a one to one correspondence

Γ(S′,Cospec(U)) ≃ HomOS′ -co-alg (OS′ ,US′) ,

whereOS′ is given the co-algebra structure of the multiplicative group scheme, as seen in item 2
of example 2.20, and the right hand side denotes the morphisms of OS′-co-algebras, which are
morphisms of OS′-modules preserving the morphisms ∆ and η. More explicitly this identific-
ation associates φ : OS′ → US′ to φ(S′)(1) ∈ Γ(S′,US′). Finally it is clear that the above
identification is functorial in S′.

In order to investigate more in detail the notion of Cospec we need to be able to construct
schemes starting from quasi-coherentOS-algebras orOS-modules.

Definition 4.33: Relative spectrum and Vector bundles.
Let’s fix a scheme S.

1. Assume that A is a quasi-coherent OS-algebra. We define the relative spectrum of A, de-
noted by Spec

S
(A), as the gluing of Spec(Γ(U,A)), where U ranges over all affine open

subsets of S.

2. Let E be a quasi-coherent sheaf ofOS-modules. Denote by Sym(E) the symmetric algebra
associated to E (which, thanks to item 2 of remark 3.31 is quasi-coherent). We define the
vector bundle associated to E as

V(E) := Spec
S
(Sym(E)).

Remark 4.34.
1. Notice that the constructions outlined above can actually be carried out, as can be checked

at [Stacks, Section 01LL] and [Stacks, Section 01M1].

2. LetA be anOS-algebra. Then, as proved in [Stacks, Lemma 01LP], Spec
S
(A), is canon-

ically an S-scheme. In fact there is a morphism of schemes

π : Spec
S
(A) S,

where, for all U ⊂ S affine open, π−1(U) ≃ Spec(A(U)).

3. V(E) is endowed with some extra structure: it inherits the grading of Sym(E) thanks to

π∗OV(E) =
⊕
n≥0

Symn(E).

Then π∗OV(E) is a gradedOS-algebra and E is just the degree 1 part of this.
Remark 4.35. For a finite locally-free OS-algebra A, we can see that Cospec(A∨), as an fppf
sheaf, is representable by Spec

S
(A) and the category of finite locally-free S-schemes is equival-

ent to the category of finite locally-free co-commutative OS co-algebras, as shown in [Mes72,
Chapter III, remark 2.1.2].

Indeed, given A as above, its dual A∨ can be endowed with the structure of co-algebra, as
seen in remark 4.27. Then, invoking remark 4.32, we can construct our desired isomorphism: let
S′ ∈ Sch/S

Γ(S′,Cospec(A∨)) ≃ HomOS′ -co-alg (OS′ ,A∨
S′) ≃ HomOS′ (AS′ ,OS′)

≃ Γ(S′,Spec
S
(A)),

where the last isomorphism holds by [Stacks, Lemma 01LV]. In fact we can conclude thanks to
functoriality of the above isomorphisms.
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Remark4.36 ([Mes72, Chapter III, §2.1.3]). The above construction can be generalized to filtered
direct limits. Let U = lim−→i

Ui be a filtered direct limit of co-commutativeOS co-algebras. One
obtains an isomorphism

lim−→i
Cospec(Ui) Cospec(U).∼

Let’s now consider filtered direct limits of finite S-schemes with structure sheavesAi, finite and
locally-freeOS-algebras, and denote Ui := A∨

i as above. Then lim−→i
Ui is a limit of finite locally-

free co-commutative OS co-algebras. In particular, given a Barsotti-Tate group or a formal Lie
variety over S, one can write it asCospec(U) for an appropriate co-commutativeOS co-algebra
U , constructed as just outlined.

Definition 4.37: fppf sheaf associated to anOS-module.
Let S be a scheme and V be anOS-module. We will denote byW(V) the functor

W(V) : (Sch/S)op Gp

S′ Γ(S′,VS′),

where VS′ , as usual, denotes the pullback of V to S′.

Proposition 4.38 ([SGA3-1, proposition 4.6.2]). The functor W commutes with base changes, so
thatW(V)S′ ≃W(VS′), where the subscript S′ denotes respectively the base change and the pullback
along S′ → S.

Notation 4.39.
To be more consistent with [Mes72], we will introduce a lighter notation to denote the same
object. Let S be a scheme andM a quasi-coherent sheaf of OS-modules. Then we will write
M := W(M) for an OS-module. In particular OS itself is an OS-module, hence we will de-
note byOS := W(OS) and say thatM is anOS-module.

Proposition 4.40 ([SGA3-1, proposition 4.6.5]). Let S be a scheme and V a locally-freeOS-module
of finite type. We have the canonical isomorphisms of functors

V ≃ HomOS-Mod

(
W(V∨),OS

)
≃ Spec

S
(Sym(V∨)),

where we view Spec
S
(Sym(V∨)) as its associated functor of points, whereas we define S′ points of

HomOS-Mod

(
W(V∨),OS

)
to be

HomOS-Mod

(
W(V∨),OS

)
(S′) := HomOS′ -Mod (V∨

S′ ,OS′)

for all S′ ∈ Sch/S. This gives a representative in Sch/S for V , making it not only an object of Gr/S,
as defined in notation 3.21, but also of Gp/S.

Definition 4.41: Vector S-group.
Let S be a scheme and V a quasi-coherent locally-freeOS-module of finite rank. We define the
vector S-group of V to be V = W(V). We know, thanks to proposition 4.40, that V ∈ Gp/S,
since it is represented by Spec

S
(Sym(V∨)).

Proposition 4.42 ([Stacks, Proposition 03DX]). Let S be a scheme. The functorM 7→ M is fully
faithful.

Remark 4.43. As a consequence, in what follows, like [Mes72] we will switch between morph-
isms of sheaves of OS-modules and morphism between the associated sheaves of OS-modules
without problem.
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Definition 4.44.
Let U be a co-commutativeOS co-algebra.

1. We say that a section x of U is primitive iff∆(x) = x⊗ 1 + 1⊗ x.

2. We denote by Lie(U) the sheaf ofOS-modules whose sections on T ⊂ S open are given
by primitive sections of U on T .

3. We denote by Lie(U) the sheaf ofOS-modules associated to Lie(U) as in notation 4.39.

Moreover considerG ∈ Gr/S for which there exists a co-algebra U such thatG = Cospec(U)
as fppf sheaves (which in particular include formal Lie groups and Barsotti-Tate groups). Then we
define Lie(G) := Lie(U).

Remark4.45 ([Mes72, Chapter III, example 2.2.2]). LetU be a finite and locally-freeOS-module,
where S is a scheme. Then we have the following isomorphism (U∨)∨ ≃ U . Assume, moreover,
U is a co-commutative and augmentedOS co-algebra, i.e. it is given with a counit η : U → OS .
Then, by proposition 4.40, we haveX = Cospec(U) ≃ Spec

S
(U∨) as fppf sheaves. Let’s now

define ωX with respect to the section e : S → X associated to the counit η : U → OS via the
identification

HomOS
(US ,OS) ≃ Γ(S, Spec

S
(U∨)).

It can be viewed as the dual of the tangent space at the origin of our group X . Analogously the
requirements that sections ofLie(U) be primitive, can be seen as a formal version of Leibniz rule,
so that these sections can be paired with left invariant derivations, i.e. elements of the tangent
space at the origin. All in all, the above can be expanded to obtain an isomorphism

Lie(X) = Lie(U) ≃ HomOS
(ωX ,OS) = ωX

∨.

This result can be extended to the case where U is a filtered direct limit of finite, locally-free and
augmented co-algebras, where the transition morphisms are compatible with augmentations. In
particular this is the case ifCospec(U) is a formal Lie variety.

4.3 Exponentials and prolongations
Here we generalize the concept of exponential, seen in definition 4.20, to groups on S and see
how this construction relates to prolongations. Let A be a ring, I ◁ A an ideal with nilpotent
divided powers and A0 := A/I . Denote by S := Spec(A) and by S0 := Spec(A/I) its closed
subscheme defined by the ideal I .

Exponentials

For this section we will be interested in V a locally-free A-module of finite rank and G =
Spec(B) a finite locally-free group scheme over S. Consider the S-group V ×S G, whose ring
isC := Sym(V ∨)⊗AB andH an S-group isomorphic to V ×S G as pointed schemes (but not
necessarily as group objects). Here we want to extend the theory of exponentials toH .

Remark 4.46. Since V ×S G is isomorphic toH as pointed schemes, we have ωH ≃ ωV×SG,
locally-free of finite type. Thanks to remark 4.45 this implies that Lie(H) is also locally-free.

Definition 4.47: [Mes72, Chapter III, §2.6.8].
LetW be a locally-freeOS-module of finite rank. Denote byW0 andH0 the restrictions ofW
andH to S0 (i.e. their pullback along the closed immersion S0 ↪→ S). Then we will denote

HomGr/S (W, H) HomGr/S0

(
W0, H0

)
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the map induced by the pullback functor on hom groups. Here one can define a morphism

exp: HomOS-Mod (W, I · Lie(H)) ker
[
HomGr/S (W, H) HomGr/S0

(
W0, H0

) ]
by setting, on sections, exp(θ)(x) := exp (θ(x)). More precisely, to θ : W → I · Lie(H), we
associate the map exp(θ) : Γ(W)→ C∨, given on sections by

exp(θ)(x) = exp (θ(x)) :=
∑
n≥0

(θ(x))[n],

for all sections x ofW . Notice that, by theorem 4.14, exp(θ) maps Γ+(W) in I · Lie(H). This
last has nilpotent divided powers, hence for N sufficiently large, (θ(x))[n] = 0 for all n ≥ N .
Then the above sum is finite and the map is well defined. Taking the transpose of such a map we
obtain amapping (C∨)∨ ≃ C → Sym(W∨), which corresponds to anS-grouphomomorphism
W → H . Then one can check that it actually sits in the desired kernel following [Mes72, Chapter
III, §2.4, §2.6].

Prolongations

Let’s now concentrate our efforts on lifting homomorphisms. Consider S, S0 as before andH an
S-group given as a vector S-group, i.e. H = V , where V is a locally-free OS-module of finite
rank. As usual, denote by V0 andH0 the restriction of the above to S0.

Remark 4.48 ([Mes72, Chapter III, §2.7]). In order to study prolongations of homomorphisms it
is useful to notice that the above construction canbe carried out in the following case. Let’s assume
thatG ∈ Gr/S is a filtering direct limit of representable subgroupsGα. Assume that Inf1(G) =
Inf1(Gα) for some α, so that Lie(G) = Lie(Gα). Then one can define the exponential map in
this case, giving rise to

exp: HomOS-Mod (V, I · Lie(G)) ker
[
HomGr/S (H,G) HomGr/S0

(H0, G0)
]

where, as before, V0 andG0 are the pullback of V andG along S0 ↪→ S. In particular, thanks to
[Mes72, Chapter II, Corollary 3.3.16], the above conditions are satisfied by Barsotti-Tate groups
over a base scheme S on which p is nilpotent.

Definition 4.49: Linearly compatible prolongations.
Let u0 : H0 → G0 be a homomorphism of S-groups. We say that two lifts u′, u′′ : H → G of
u0 are linearly compatible iff their difference is in the image of

exp: HomOS-Mod (V, I · Lie(G)) ker
[
HomGr/S (H,G) HomGr/S0

(H0, G0)
]
.

Remark 4.50. The above is an equivalence relation on the set of lifts of u0.

Let’s now study better this relation with the exponential map in the context of

u0 : V0 G0

a monomorphism with imageH0 ⊂ G0. We want to study the set of lifts ofH0 to subgroupsH
ofG that are flat over S, together with the structure of locally-free module onH , lifting that of
H0.
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Remark 4.51 ([Mes72, Chapter III, §2.7.3]). In caseH is a solution to this problem, it is given by
V , where V is a finite, locally-free OS-module. Any such V is determined up to a (non-unique)
isomorphism. Fixed one such V , givingH is equivalent to giving a morphism u : V → G lifting
u0, modulo identifying two such morphisms if they differ by an OS-automorphism of V which
reduces to the identity on V0.

Lemma 4.52 ([Mes72, Chapter III, lemma 2.7.4]). Let u0,V, G,V0, G0 be as above. Any homo-
morphism u : V → G lifting u0 : V0 ↪→ G0 is a monomorphism.

Definition 4.53: Congruent lifts.
Two liftsu, u′ : V → G ofu0 are said to be congruent iff the differ by anOS-linear automorphism
of V reducing to the identity on V0.

Remark 4.54. By remark 4.51 it is clear that two lifts ofu0 are congruent iff they define the same
solutionH to the problem of lifting subgroups ofG0 to subgroups ofG.

Lemma 4.55 ([Mes72, Chapter III, lemma 2.7.6]). If u and u′ are congruent lifts of u0, then they are
linearly compatible.

Remark 4.56. Let’s notice that this proposition allows to transfer the equivalence relation, via
the exponential map, from lifts of u0 to solutions of the problem of lifting the subgroupH0. In
particular we can rephrase it in terms of subgroups ofLie(G). More explicitly let h ⊂ Lie(G) be
a locally-free submodule ofLie(G) lifting h0 := Lie(H0). Then the following proposition holds.

Proposition 4.57 ([Mes72, Chapter III, proposition 2.7.7]). In each linear equivalence class of solu-
tions of the problem of lifting the subgroupH0 there is exactly oneH with Lie(H) = h.

4.4 Crystals
Here we finally give the definition of crystalline site and, then, of crystal on such a site. This
concept was introduced by A. Grothendieck, who described his choice of terminology saying:
«Un crystal possède deux propriétés caractéristiques : la rigidité, et la faculté de croître, dans un voisinage
approprié. Il y a des cristaux de toute espèce de substance : des cristaux de soude, de soufre, de modules,
d’anneaux, de schémas relatifs, etc. »1

Crystalline site

In order to introduce crystals we need to first define the crystalline site. Here, as a start, we will
introduce the basic terminology needed to give some meaning to our objects.

Definition 4.58: Thickening.
Let X be a scheme. We say that a scheme X ′ is a thickening of X iff X is a closed subscheme
of X ′ and their underlying topological spaces are equal. More generally, given a scheme S and
X,X ′ ∈ Sch/S, we say thatX ′ is a thickening ofX over S iff the closed immersionX ↪→ X ′ is
a morphism over S.

Remark 4.59. For thickenings, the closed embedding f : X → X ′ gives a homeomorphism of
the underlying topological spaces. Recall, moreover, that to a closed immersions X ↪→ X ′ in
Sch/S we can associate a quasi-coherent sheaf of ideals I ofOX′ . If the ideal sheaf I associated
to the thickeningX ↪→ X ′ is globally nilpotent, i.e. there exists n ∈ N such that In+1 = 0, we
say thatX ↪→ X ′ is a finite order thickening.

1A crystal has two characteristic properties: rigidity and ability to grow in appropriate neighbourhoods. There are
crystals of every kind of substance: crystals of soda, of sulphur, of modules, of rings, of relative schemes, etc.
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Definition 4.60: Divided power thickening.
LetU be a scheme. A divided power thickening ofU is the datum of (U ↪→ T, γ), whereU ↪→ T is
a thickening defined by a locally nilpotent sheaf of ideals I onOT equipped with a divided power
structure defined by γ.

Remark4.61. Thanks to remark 4.59, the datumof a divided power thickening ofU is equivalent
to the datum of a schemeT with divided powers, i.e. (T,J , δ), as in definition 4.22. If, moreover,
U ↪→ T is a closed immersion in Sch/S and p is locally nilpotent on S, then J is a locally
nilpotent sheaf of ideals. Indeed reasoning in the affine case we see that p, being nilpotent inOS ,
is also nilpotent in OT . Then, for each x ∈ Γ(T,J ), we have xpn

= (pn)!γpn(x) = 0 for n
large enough.

In case our base scheme already has divided powers, though, we want to consider only divided
power schemes on which divided powers extend those on the basis.

Definition 4.62: Relative divided powers.
Consider a base scheme with divided powers (S, I, γ), and a divided power scheme (T,J , δ).
We call it

1. a divided power scheme over (S, I, γ) iff it is given with a morphism T → S of divided
power schemes;

2. a divided power thickening over (S, I, γ) iff it is a divided power thickening endowed with a
morphism of divided power schemes T → S.

If the divided powers of S are clear from context we will simply write divided power scheme
(resp. thickening) over S.

Definition 4.63: Crystalline site onX over (S, I, γ).
Let (S, I, γ) be a divided power base scheme and X ∈ Sch/S be an S-scheme on which p is
locally nilpotent. The crystalline site onX over (S, I, γ), denoted by Crys(X/S, I, γ) or simply
Crys(X/S) if the divided power structure of S is clear from context, is given as follows. The ob-
jects of Crys(X/S) are divided power thickenings (U ↪→ T, δ) over (S, I, γ) with an open im-
mersion U ↪→ X of S-schemes. A morphism f : (U ↪→ T, γ)→ (U ′ ↪→ T ′, δ) in Crys(X/S)
is given by a commutative diagram

U T

U ′ T ′,

f f (4.1)

such that f : U ↪→ U ′ is an open immersion (corresponds to an inclusion of open S-subschemes
of X ) and f : T → T ′ is a divided power morphism. Finally we endow this category with the
pretopology induced by the Zariski topology. More explicitly

{(Ui ↪→ Ti, γi) (U ↪→ T, γ)}i∈I

is a covering iff, for all i, the map Ti ↪→ T is an open immersion and the family {Ti → T}i∈I

is jointly surjective. Then, since Ui and Ti have the same underlying topological space, we also
obtain that ∪i∈IUi = U as sets.

Notation 4.64.
In case we consider the base scheme S = Spec(Z)with trivial divided powers (given by the zero
sheaf of ideals), we obtain the category Crys(X/S), which we simply denote by Crys(X) since
there is no restriction imposed by S. The following constructions are carried out over Z to keep
notation cleaner, but can be generalized to the general case Crys(X/S).
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Remark 4.65 (Sheaves on the crystalline site onX ). Let’s remark that a sheafF onCrys(X), for
every object (U ↪→ T, γ), gives rise by restriction to a Zariski sheafFT on the scheme T setting

FT (W ) := F(U ∩W ↪→W, δ|W ),

whereW ⊂ T is an open subscheme. Moreover a morphism f : (U ↪→ T, δ)→ (U ′ ↪→ T ′, δ′)
in Crys(X) gives rise to a canonical comparison map

cf : f
−1FT ′ FT .

More explicitly, for all openW ′ ⊂ T ′, one defines the restriction

f |f−1W ′ : (U ∩ f−1W ′ ↪→ f−1W ′, δ|f−1W ′) (U ′ ∩W ′ ↪→W ′, δ′|W ′) .

This defines amapFT ′(W ′)→ FT (f
−1W ′)which, in turn, induces amorphismFT ′ → f∗FT

and finally, by adjunction, this gives the desired morphism cf . Moreover we can notice that if, in
equation (4.1), f is an open immersion, then cf is an isomorphism, sinceFT is just the restriction
ofFT ′ to T .

Conversely, using a standard argument for gluing of sheaves, see [Stacks, Section 07IN], one
can define a sheaf on the crystalline site from the following data.

1. A family of Zariski sheavesFT , indexed by all objects (U ↪→ T, δ) ∈ Crys(X).

2. A family of morphisms ρu : u−1FT ′ → FT , indexed by morphisms u of Crys(X), satis-
fying the usual cocycle condition, i.e. such that the following diagram commutes

u−1v−1FT ′′ v−1FT ′

(u ◦ v)−1 FT ′′ FT

v−1ρu

∼ ρv

ρu◦v

where u : (U ↪→ T, δ) → (U ′ ↪→ T ′, δ′) , and v : (U ′ ↪→ T ′, δ′) → (U ′′ ↪→ T ′′, δ′′)
range over all morphisms of Crys(X).

Example 4.66 (Structure sheaf). The above remark allows one to define a canonical structure
sheaf on Crys(X), denoted byOCrys(X), given by the family of structure sheavesOT indexed by
the objects (U ↪→ T, δ) ∈ Crys(X).

Crystals

We can finally focus our attention on crystals and their pullback.

Definition 4.67: Sheaf of modules.
We say that a sheaf on Crys(X) is a sheaf of modules iff it is a sheaf ofOCrys(X)-modules.

Remark 4.68. We can remark that a sheaf on Crys(X) is a sheaf of modules iff it induces, as in
remark 4.65, a family {MT }T ofOT -modulesMT , indexed by (U ↪→ T, δ) ∈ Crys(X).

Moreover, given a sheaf of modulesM on Crys(X), the morphism ρu : u
−1MT ′ → MT ,

where u : (U ↪→ T, δ)→ (U ′ ↪→ T ′, δ′) is a morphism in Crys(X), induces a morphism

σu : u
∗MT ′ MT . (4.2)
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Definition 4.69.
We say that a sheaf of modulesM is special iff, for all morphisms inCrys(X), the inducedmorph-
ism in equation (4.2) is an isomorphism. Moreover we say thatM is quasi-coherent iff it is special
and, for all (U ↪→ T, δ) ∈ Crys(X), theOT -moduleMT is quasi-coherent.

Remark4.70. Usually, whendealingwith special sheaves ofmodules, wewill omit the isomorph-
ism σu and assume that there is a literal equality. In particular, given a special sheaf of modules
F, we will write u∗FT ′ = FT .

Definition 4.71: Crystals of modules.
We say that a sheaf of modules on Crys(X) is a crystal of modules iff it is special. Moreover, fol-
lowing notation of [Mes72], we will denote them using a blackboard bold typeface.

Remark 4.72. This is just a special case of a more general notion of C-crystal, where C is a cat-
egory fibered over Sch. In fact, givenC, one definesC-crystals as cartesian sections of the fibered
category C×Sch Crys(X), where Crys(X)→ Sch is given by (U ↪→ T, δ) 7→ T .

We can now end this section by outlining the construction of inverse images of crystals.

Remark 4.73. Since crystals are sheaves we can define them locally, given that we satisfy the
necessary compatibility conditions. In particular, given a crystal ofmodulesF onCrys(Y ), where
Y ∈ Sch, and a morphism of schemesφ : X → Y , we want to define a crystalφ∗F on Crys(X).
To do so we will concentrate only on objects (U ↪→ T, δ) ∈ Crys(X) such thatU (hence also T )
is affine and φ(U) is contained in an affine subset V of Y .

Definition 4.74: [Mes72, Chapter III, §3.8], pullback of crystals.
Consider X,Y ∈ Sch, φ : X → Y a morphism of schemes and F a crystal of modules on Y .
Fix U and V as in the last remark and set T = Spec(A), U = Spec(A/I) and V = Spec(B).
Consider the following pullback of rings, also known as fibered product or amalgamated product,

A/I A

B B ×A/I A.

By construction (fibered products of commutative rings commute with for : CRings→ Sets) the
morphismB ×A/I A↠ B is surjective with kernel J := (0)× I . Since I is nilpotent, also J is.
Moreover one can define divided powers on

(
B ×A/I A, J

)
by setting γn(0, i) := (0, δn(i)),

making B ×A/I A → A a divided power morphism. Setting W := Spec(B ×A/I A) and
translating everything into the category of schemes, we obtain the following cartesian diagram

U T

V W,

φ|U φ̃

where, as we’ve just shown, (V ↪→W,γ) is an object of Crys(Y ) and φ̃ : T → W is a morph-
ism of divided power schemes. We finally define (φ∗F)(U↪→T,δ) := φ̃∗F(V ↪→W,γ) and use re-
mark 4.65 to glue these sheaves together and obtain φ∗F a crystal on Crys(X).

Proposition 4.75. The construction carried out in definition 4.74 is well defined. More explicitly the
definition of φ̃∗F(V ↪→W,γ) does not depend on the chosen affine V containing φ(U).
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Proof. Let’s keep notation as in definition 4.74 and consider another open affineV ′ inY contain-
ing φ(U). As above we construct (V ′ ↪→W ′, γ′) ∈ Crys(Y ), whereW ′ := V ′ ⨿U T and has
divided powers defined as forW . Denote by φ̃′ : T → W ′ the morphism defined in the same
way as φ̃, then we need to show

φ̃∗F(V ↪→W,γ) = φ̃′∗F(V ′↪→W ′,γ′).

Again we are working with sheaves, hence it suffices to check equality locally. Let U0 ⊂ U be
an open affine subset such that φ(U0) ⊂ V0 ⊂ V ∩ V ′, where V0 is again open affine. Finally
we define T0 ⊂ T the open subscheme of T induced by the immersion U0 ↪→ U . Repeating the
construction with amalgamated product we obtain the diagram

U0 T0

V0 W0.

φ̃0

Moreover this construction is such that the following diagrams both commute

U0 T0

V0 W0

U T,

V W

φ̃0

φ̃

U0 T0

V0 W0

U T.

V ′ W ′

φ̃0

φ̃′

Then, by universal property of amalgamated coproduct, we obtain the existence and uniqueness
of the dashed arrows. Now we can conclude, since F is a crystal and commutativity of the above
diagrams implies

(φ̃∗F(V ↪→W,γ))
∣∣
T0

= φ̃∗
0F(V0↪→W0,γ0) = (φ̃′∗F(V ′↪→W ′,γ′))

∣∣
T0
.

As a consequence we see, by sheaf properties, that the definition of φ̃∗ does not depend on the
chosen V . ■

5 The crystals associated to Barsotti-Tate groups
In this section we want to associate to certain Barsotti-Tate groups a few crystals. In particular,
as hinted at in the introduction, we will give the definition of D∗, the crystal whose aim is to
generalize the Dieudonné module associated to a Barsotti-Tate group. In order to do so we need
to discuss universal extensions, which will be the basis for the definitions of such crystals.

5.1 Universal extensions
Before studying the case of our interest, let’s recall the necessary definitions and notations with
regards to extensions in general.
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Extensions

Here we will usually assume C to be an abelian category on which we can compute the ExtnC
functors. Let’s recall already remark 3.22, which states thatGr/S satisfies the above requirements.

Definition 5.1: Extension.
Let C be an abelian category and A,B ∈ C. We define an extension X of A by B to be a short
exact sequence

(ζ) 0 B X A 0,

whereX ∈ C. We might also denote the extension by ζ . Moreover, given two extensions ζ and
ζ ′ ofA byB, respectively given byX andX ′, we say that a morphism of extensions ofA byB is a
morphism f : X → X ′ that makes the following diagram commute

(ζ) 0 B X A 0

(ζ ′) 0 B X ′ A 0.

f

Finallywe introduce the notationE(A,B) for the set of all extensions ofA byB, and the notation
Hom(ζ, ζ ′) to denote the set of morphisms f : X → X ′ inducing a morphism of extensions.

Remark 5.2. Notice that, thanks to the five lemma, all f ∈ Hom(ζ, ζ ′) are isomorphisms in C.

Definition 5.3: Pullback and pushout.

1. Given a morphism γ : A′ → A and an extensionX ofA byB, we defineX ′ := X×AA
′,

so that we have the following morphism of short exact sequences

(ζγ) 0 B X ′ A′ 0

(ζ) 0 B X A 0.

γ

The extensionX ′ of A′ by B is called the pullback ofX via γ : A′ → A. Moreover, if we
denote with ζ the extensionX ofA byB, then ζγ will denote its pullback via γ.

2. Given amorphism β : B → B′ and an extensionX ofA byB, we defineX ′ := B′⨿AX ,
so that we have the following morphism of short exact sequences

(ξ) 0 B X A 0

(βξ) 0 B′ X ′ A 0.

β

The extensionX ′ of A by B′ is called the pushout ofX via β : B → B′. Moreover, if we
denote with ξ the extensionX ofA byB, then βξ will denote its pushout via β.
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Remark 5.4. Given an extension

(ζ) 0 M E G 0,ι π

we can construct an isomorphism

HomGr/S (G,M) Aut(ζ)

u idE +ι ◦ u ◦ π,

∼

where we denoted by Aut(ζ) := Hom (ζ, ζ). The construction of the inverse morphism fol-
lows naturally from the universal properties of kernel and cokernel, sinceM = kerπ andG =
coker ι.

Remark 5.5. We define an equivalence relation on the set E(A,B) by saying that ζ ∼ ζ ′ iff
Hom (ζ, ζ ′) ̸= 0, i.e. iff there is a commutative diagram

(ζ) 0 B X A 0

(ζ ′) 0 B X ′ A 0
∼

connecting the two extensions. Assume now that we can compute ExtnC(A,B) for all A,B ∈
C and all n ∈ N. Then we can define a map θ : E(A,B) → Ext1C(A,B) as follows. Fix an
extension ζ ∈ E(A,B), given by X , and denote by hB the Yoneda embedding defined, for all
X ∈ C, by hB(X) := HomC (X,B). We apply the right derived functor

{
RnhB

}
n∈N of hB ,

to the short exact sequence

(ζ) 0 B X A 0,

corresponding to the extension ζ . This gives rise to the exact sequence

0 HomC (A,B) HomC (X,V ) HomC (B,B) Ext1C(A,B).∂

Then we define θ(ζ) := ∂(idB) ∈ Ext1C(A,B).

Lemma 5.6 ([Wei94, §3.4, Porism 3.4.2]). Let C be an abelian category on which we can compute
ExtnC(A,B) for all A,B ∈ C and all n ∈ N. Let ζ ∼ ζ ′ be equivalent extensions of A by B. Then
θ(ζ) = θ(ζ ′), hence θ defines a map

θ :
E(A,B)

∼
Ext1C(A,B).

Theorem 5.7 ([Wei94, §3.4, Thoerem 3.4.3]). Let C be an abelian category on which we can compute
ExtnC(A,B) for allA,B ∈ C and all n ∈ N. Then θ induces a bijective correspondence

E(A,B)

∼
Ext1C(A,B).θ

Remark 5.8. The above construction can be made into a group isomorphism if we endow the
set E(A,B)/ ∼ with an appropriate sum, called Baer sum.
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Universal extensions

For this section we fix S a scheme andG a finite locally-free S-group. For the first proposition
it is not necessary, but for the rest of the section we will assume that pN is zero on S. We recall
that, thanks to remark 3.22, we can apply the results of last section to Gr/S.

Proposition 5.9 ([Mes72, Chapter IV, proposition 1.3]). The functor acting, on quasi-coherentOS-
modules, by

M HomGr/S (G,M)

is corepresented by ωGD , whereGD is the Cartier dual ofG.

Remark 5.10. The proposition implies that there is a homomorphism α : G → ωGD with the
property that, for all β : G →M, there is a unique linear u : ωGD →M such that β = u ◦ α.
Moreover, following [Mes72, Chapter IV, remark 1.6], one can check that the isomorphism

HomGr/S (ωGD ,M) HomGr/S (G,M)∼

is functorial inG. Thus, given a morphism of finite locally-free S-groups u : G→ H , we have a
commutative diagram whose lower horizontal arrow is induced by the Cartier dual of u

G H

ωGD ωHD .

u

αG αH (5.1)

Lemma 5.11. Let S be a scheme killed by pN ,G a Barsotti-Tate group on S andM a quasi-coherent
OS-module. Then any extension ζ ofG byM is uniquely determined by θ(ζ) ∈ Ext1Gr/S(G,M).

Proof. Since pN kills S, multiplication by pN is the trivial map onM. As a consequence, for all
f ∈ HomGr/S (G,M), we obtain the following commutative diagram

G M

G M.

f

pN 0
pN

f

But this means that f ◦ pN = 0 and, since multiplication by pN on G is an epimorphism, that
f = 0. This proves that HomGr/S (G,M) = 0. Thanks to remark 5.4, this implies that the
only automorphism of ζ is the identity. Let’s now recall remark 3.22, which states that Gr/S is
an abelian category with enough injectives. This allows us to apply theorem 5.7. Then the above
implies that ζ is uniquely determined by θ(ζ) ∈ Ext1Gr/S(G,M), since its equivalence class is
reduced to ζ itself. ■

Definition 5.12: Universal extension.
Let S be a scheme,G ∈ BT/S and V(G) a vector S-group, as in definition 4.41. We say that an
extension ζ ∈ E(G,V(G)), given byE(G), is universal iff, given any extension

(ξ) 0 M (∗) G 0

of G by a vector S-groupM, where alsoM is a quasi-coherent OS-module, there is a unique
map φ : V(G)→M such that φζ = ξ, i.e. the pushout ofE(G) by φ is the given extension ξ.
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Remark 5.13. Let’s consider again the casewhere p is nilpotent on the base schemeS. By rigidity
of extensions of Barsotti-Tate groups by quasi-coherent modules, i.e. lemma 5.11, we see that
φζ = ξ is actually an equality, and not just an isomorphism.
Proposition 5.14. Let S be a scheme killed by pN andG a Barsotti-Tate group on S. Then there is a
universal extension ofG by a vector group, which we denote by

0 V(G) E(G) G 0.

Proof. Let’s start by noticing that we are in the same situation of lemma 5.11. Consider now the
short exact sequence

(ζ ′) 0 G(N) G G 0.
ιG pN

Let’s fix a quasi-coherent OS-moduleM. Applying, as in remark 5.5, the right derived functor{
RnhM

}
n∈N, we obtain the long exact sequence

0 HomGr/S (G(N),M) Ext1Gr/S(G,M) Ext1Gr/S(G,M),∂ pN

where we used HomGr/S (G,M) = 0, as seen in lemma 5.11. Moreover Ext1 is a bifunctor,
which implies that the map pN : Ext1Gr/S(G,M) → Ext1Gr/S(G,M) comes from multiplica-
tion by pN inM. By additivity of Ext, this is 0, which implies that ∂ is an isomorphism. Clearly
this argument is functorial inM. Moreover, by proposition 5.9, we see that the source of ∂ is
represented by ωG(N)D . Let α : G(N)→ ωG(N)D be as in remark 5.10 and define ζ := αζ ′, as
in the following commutative diagram

(ζ ′) 0 G(N) G G 0

(αζ ′) 0 ωG(N)D E(G) G 0,

ιG

α

pN

where we denoted by E(G) := ωG(N)D ⨿G(N) G. Then, by rigidity of extensions of G by
vector groups (lemma 5.11) any extension ξ ofG by a vector group is uniquely determined by its
class θ(ξ) ∈ Ext1Gr/S(G,M). By the above this corresponds to a morphism u : G(N) → M
which, thanks to remark 5.10, factors through α as u = α ◦ β. Finally, thanks to naturality of
the connecting morphism ∂, we obtain the following commutative diagram, obtained from the
pushout of the extension ζ via β:

0 HomGr/S (P,M) HomGr/S (M,M) Ext1Gr/S(G,M)

0 HomGr/S (E(G),M) HomGr/S

(
ωG(N)D ,M

)
Ext1Gr/S(G,M)

0 0 HomGr/S (G(N),M) Ext1Gr/S(G,M),

HomGr/S( · ,β)

∂1

HomGr/S( · ,α)

∂2

∂3

where the extension βζ ofG byM is given by P . By definition of θ the rightmost rectangle acts
on elements as

idM θ(βζ)

u θ(ξ).

∂1

β∗◦α∗

∂3
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Commutativity of this diagram implies that θ(βζ) = θ(ξ). Then rigidity of the extensions grants
that ξ = βζ , i.e. that ζ is universal. ■

Remark 5.15 ([Mes72, Chapter III, remark 1.11]). Notice that in the above proposition one could
substitute N with any n ≥ N and still obtain a universal extension. The unique isomorphism
comes from the commutative diagram of equation (5.1) which, setting H = G(N) and G =
G(N + i), becomes

G(N + i) G(N)

ωG(N+i)D ωG(N)D .

pi

αG(N+i) αG(N)

∼

Here the fact that the bottom arrow is an isomorphism is remark 3.55. Then, thanks to universal
property of pushout it’s easy to construct amorphismof extensions, which is clearly an isomorph-
ism thanks to the five lemma.

Definition 5.16.
Given S and G as before, for n sufficiently big, we define V(G) := ωG(n)D and E(G) :=
V(G)⨿G(n) G. Then the extension

(ζ) 0 V(G) E(G) G 0

is universal. MoreoverE(G) is an fppf sheaf of groups onS, determined up to unique isomorph-
ism.

Now that we have finally defined it, let’s see a few results concerning this universal extension.

Lemma 5.17 ([Mes72, Chapter IV, lemma 1.13]). The universal extension

0 V(G) E(G) G 0

commutes with base change.

Lemma 5.18 ([Mes72, Chapter IV, corollary 1.14]). Assume that p is only locally nilpotent on S and
considerG a Barsotti-Tate group on S. Then there is a universal extension, which we denote by

0 V(G) E(G) G 0,

ofG by the vector group V(G) := ωGD .

Proposition 5.19 ([Mes72, Chapter IV, proposition 1.15]). Let p be locally nilpotent onS andG,H
be two Barsotti-Tate groups on S, with a homomorphism u : G → H . Then there is a unique homo-
morphism E(u) : E(G)→ E(H) inducing the morphism of extensions

0 V(G) E(G) G 0

0 V(H) E(H) H 0,

V(u) E(u) u

where V(u) is induced by the Cartier dual of u.

Recall that, in notation 3.27, we introduced the notationG := lim−→k∈N Infk(G), forG ∈ Gr/S.
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Proposition 5.20 ([Mes72, Chapter IV, proposition 1.19]). LetG ∈ BT/S and S be as before, then
E(G) is a formal Lie group.

Definition 5.21.
LetS be a schemewhere p is locally nilpotent andG a Barsotti-Tate group onS. Denote byE(G)
the universal extension ofG, then we define Lie(E(G)) := Lie(E(G)).

Remark 5.22. Notice that Lie(E(G)) is a locally-freeOS-module of finite rank.

Let’s end with a couple of results, still with the same notation and hypothesis as before.

Proposition 5.23 ([Mes72, Chapter IV, proposition 1.21]). The following sequence is exact

0 V(G) E(G) G 0.

Proposition 5.24 ([Mes72, Chapter IV, proposition 1.22]). The following sequence is exact

0 V(G) Lie(E(G)) Lie(G) 0.

5.2 Crystals associated to Barsotti-Tate groups
Here we can finally make use of the above results to define the desired crystals associated to
Barsotti-Tate groups. Since it will be used in what follows, we start by introducing the follow-
ing notation.

Remark 5.25. This section follows [Mes72, Chpater IV, §2], in which the author introduces a
new notation. Let S0 be a scheme on which p is locally nilpotent. He denotes by BT′(S0) the
subcategory of locally infinitesimally liftable Barsotti-Tate groups, i.e. which can be locally lif-
ted along finite order thickenings. At the same time, in the introduction to his work, Messing
acknowledges that it has been shown that all objects G0 ∈ BT/S0 satisfy this condition. For
this reason we chose to differentiate our notation from that of [Mes72]. Still, since it is used to
define our crystals, here is the precise lifting requirements asked by Messing. We say that G0 is
locally infinitesimally liftable iff there is an affine open cover {Ui}i∈I of S0, which depends on
G0, on which, for all i and all finite order thickening Ui ↪→ U , there is a G ∈ BT/U such that
G|Ui

= G0|Ui
.

Theorem 5.26 ([Mes72, Chapter IV, theorem 2.2]). Let S = Spec(A) such that pN · 1A = 0
and S0 := Spec(A/I) ↪→ S, where I is an ideal of A with nilpotent divided powers. Consider
G,H ∈ BT/S and a homomorphism u0 : G0 → H0 between the respective restrictions to S0. By
proposition 5.19, u0 induces a morphism of extensions v0 := E(u0) : E(G0)→ E(H0), making the
diagram commute:

0 V(G0) E(G0) G0 0

0 V(H0) E(H0) H0 0.

V(u0) v0 u0

Then there is a unique morphism of S-groups v : E(G)→ E(H), which is not necessarily a morphism
of extensions, but satisfies the following properties.

1. v is a lift of v0.
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2. Denote the inclusions by i : V(H)→ E(H) and by j : V(G)→ E(G). Given w : V(G)→
V(H) a lift of V(u0) such that d := (i ◦ w − v ◦ j) : V(G) → E(H) induces the zero
morphism on S0, then d is an exponential.

Remark 5.27 ([Mes72, Chapter IV, remark 2.3]). The morphism v is independent of the choice
of w in theorem 5.26. In fact, chosen another lift w′ of V(u0), we can write w′ = w + h, where
h, thanks to lemma 4.55 is an exponential. So, defining d′ corresponding to w′ in the above
construction, we obtain d′ = d+i◦h. But then it is easy to show that i◦h is itself an exponential,
hence that d′ is an exponential iff d is.

As shown by the following corollaries, the construction of the lift v is functorial inG.

Corollary 5.28 ([Mes72, Chapter IV, corollary 2.4.1]). LetG,H,K ∈ BT/S as before and consider
another homomorphism u′0 : H0 → K0, whereK0 again denotes the restriction ofK to S0. Denote by
ES(u0) the morphism v whose existence is granted by theorem 5.26. ThenES(u

′
0 ◦ u0) = ES(u

′
0) ◦

ES(u0).

Corollary 5.29 ([Mes72, Chapter IV, corollary 2.4.2]). If, in the above notation,G = H and u0 =
idG0

, thenES(u0) = idG.

Corollary 5.30 ([Mes72, Chapter IV, corollary 2.4.3]). LetG,H, u0 as in theorem 5.26, with u0 an
isomorphism. ThenES(u0) is an isomorphism too.

Corollary 5.31 ([Mes72, Chapter IV, corollary 2.4.4]). Suppose we are given a commutative diagram

S0 S

S′
0 S′,

where S0 ↪→ S and S′
0 ↪→ S′ are nilpotent immersions with divided powers, as in the statement of

theorem 5.26, and assume that S′ → S is a divided powers morphism. Consider G,H ∈ BT/S and
u0 : G0 → H0 as before. Then the construction ofES(u0) is compatible with the base changeS′ → S.
More explicitly we have

ES′(u0S′
0
) = (ES(u0))S′ = vS′ .

Thanks to the above results we are ready to define the crystals we hinted at above.

Remark 5.32 ([Mes72, Chapter IV, §2.5]). Let S0 be a scheme, on which p is locally nilpotent,
and considerG0 ∈ BT/S0. Let’s start by recalling that, since crystals are sheaves on Crys(S0), it
suffices to define them locally. More specifically we are going to define their evaluation on objects
(U0 ↪→ U, δ) ∈ Crys(S0) with the property that U0 is affine with p nilpotent on U0 and G0|U0

can be lifted to U .
Moreover, by corollaries 5.28 to 5.30, we can see that, fixing one such object of Crys(S0),

E(G) is independent of the chosen lift of G0|U0
. Also, given f : (V0 ↪→ V, δ)→ (U0 ↪→ U, γ),

a morphism in Crys(S0) inducing the diagram

U0 U

V0 V,

f f

then f is an open immersion. Hence u0 : f−1 G0|U0
→ G0|V0

is an isomorphism. Then, ap-
plying corollary 5.30 to GU a lift of G0|U0

to U and GV of G0|V0
to V , we obtain a canonical

isomorphism

f
∗
(E(GU )) E(GV ).

∼
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Definition 5.33.

1. In the above notation, we define the crystal E(G0) by setting its value on (U0 ↪→ U, δ), as
considered before, to be E(G) for any lift of G0|U0

. This sheaf is indeed a crystal thanks
to remark 5.32.

2. In the same way we define, for any morphism u0 : G0 → H0 of Barsotti-Tate groups on
S0, a morphism between the associated crystals. In particular, on "sufficiently small" open
subsets U0 ↪→ U as before, we set E(u0) := E(u0).

3. Finally, for an arbitrary morphism of schemes f : T0 → S0, we can define the pullback of
the crystal E(G0), denoted by f∗ (E(G0)), on "sufficiently small" open sets in the crystal-
line site of T0. Here we say that V0 ↪→ V is sufficiently small iff

(a) f(V0) ⊂ U0, where U0 ⊂ S0, as before, is affine with p nilpotent on U0,
(b) G0|U0

can be lifted to infinitesimal neighbourhoods and finally
(c) V0 is affine.

Remark 5.34 ([Mes72, Chapter IV, §2.5]). Sincewe are in the affine case we can use the construc-
tion of amalgamated sum of schemes to obtain the diagram

U0 U := U0 ⨿V0
V

V0 V.

f f

Then, as seen in remark 5.32, for a liftGU of G0|U0
to U , we have

f∗ (E(G0))U0↪→U = f
∗
(E(GU )) = E(GV ) = E (f∗(G0))V0↪→V .

As a consequence f∗ (E(G0)) = E (f∗(G0)). Let’s nownotice thatwewrite the above as equalit-
ies following remark 4.70; more properly these equalities should be considered as isomorphisms.
Then a more precise statement would be that the following diagram commutes up to a unique
natural equivalence:

BT/S0 {Crystals in Gr/S0}

BT/T0 {Crystals in Gr/T0} ,

E

f∗ f∗

E

where by "Crystals in Gr/S" we mean sheaves F on Crys(S) which, for each (U0 ↪→ U, γ) ∈
Crys(S), induce a sheaf F(U0↪→U,γ) ∈ Gr/S and are special, as in definition 4.69.

Definition 5.35.

1. We define the functor E, associating to any G0 ∈ BT/S0 a crystal in Gr/S0 setting, for
any (U0 ↪→ U, δ) ∈ Crys(S0),

E(G0)(U0↪→U,δ) :=
(
E(G0)(U0↪→U,δ)

)
.

2. We define the functor D, associating to any G0 ∈ BT/S0 a crystal in Gr/S0 setting, for
any (U0 ↪→ U, δ) ∈ Crys(S0),

D(G0)(U0↪→U,δ) := Lie
(
E(G0)(U0↪→U,δ)

)
.
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3. We define the functor D∗, associating to anyG0 ∈ BT/S0 a crystal in Gr/S0 setting, for
any (U0 ↪→ U, δ) ∈ Crys(S0),

D∗(G0)(U0↪→U,δ) := Lie
(
E(GD

0 )(U0↪→U,δ)

)
.

Remark 5.36. It is clear that all functors, E,E,D andD∗ are additive.

Remark 5.37. Let’s summarise the above constructions. Consider S0 ↪→ S a nilpotent divided
power immersion. Assume that G0 ∈ BT/S0 can be lifted to G ∈ BT/S. Notice that, by
remark 3.61,GD is a lift ofGD

0 . Then, up to canonical isomorphisms, we have

1. E(G0)S0↪→S = E(G),

2. E(G0)S0↪→S = E(G),

3. D(G0)S0↪→S = Lie(E(G)),

4. D∗(G0)S0↪→S = Lie(E(GD)).

5.3 Grothendieck-Messing deformation theory
In this section we present the main result of [Mes72, Chapter V]. It is going to be of fundamental
importance in the theory of Breuil and Kisin of classification of Barsotti-Tate groups over OK ,
the ring of integers of a local field. In particular this result will allow us to lift Barsotti-Tate groups
over a divided powers thickening, in a way which is uniquely determined by a certain filtration
on its associated crystal.

Notation 5.38.
Let S be a scheme on which p is locally nilpotent, I be a quasi-coherent sheaf of ideals on OS

endowed with locally nilpotent divided powers. Let S0 := Spec
S
(OS/I), so that S0 ↪→ S is an

object of the crystalline site of S0.

Remark 5.39. It is worth quoting remark 5.25, since also for [Mes72, Chapter V] Messing in-
troduces a new notion of liftable Barsotti-Tate groups. Again, we will not follow his notation
BT′(S0), since all G ∈ BT/S0 can be lifted locally (in the Zariski topology) along S0 ↪→ S,
which allows us to carry on the following construction and proofs.

Notation 5.40.
In this section we are mainly interested in the values of crystals on a specific object of Crys(S0),
given by the closed immersion S0 ↪→ S Hence we introduce the following notation. Let F a
crystal on Crys(S0), we denote by FS the Zariski sheaf F(S0↪→S,I). In particular, for the crystals
defined in the previous section, if we fixG ∈ BT/S, or equivalentlyG0 ∈ BT/S0 for whichG
is a lift to S, then we have

1. E(G0)S := E(G0)S0↪→S = E(G),

2. E(G0)S := E(G0)S0↪→S = E(G),

3. D(G0)S := D(G0)S0↪→S = Lie(E(G)).

4. D∗(G0)S := D∗(G0)S0↪→S = Lie(E(GD)).

Definition 5.41: Admissible filtration.
ConsiderG0 ∈ BT/S0. A filtration Fil1 ⊂ D(G0)S is said to be admissible iff Fil1 is a locally-
free vector subgroup with locally-free quotient which, on S0, reduces to

V(G0) Lie(E(G0)).
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Definition 5.42.
Let’s fix S0 ↪→ S as before. We define the category BF/S0 whose objects are pairs (G0,Fil

1),
where G0 ∈ BT/S0 and Fil1 is an admissible filtration on D(G0)S and whose morphisms are
defined to be pairs (u0, ξ), where u0 : G0 → H0 and ξ is a morphism of filtered objects, i.e. a
commutative diagram

Fil1 D(G0)S

Fil1 D(H0)S

ξ D(u0)S

which, on S0, reduces to
V(G0) Lie(E(G0))

V(H0) Lie(E(H0))

V(u0) Lie(E(u0))

This definition allows to state the following theorem:

Theorem 5.43 ([Mes72, Chapter V, theorem 1.6]). Let S ↪→ S0 as before. The following functor
defines an equivalence of categories

BT/S BF/S0

G (G0,V(G) ↪→ Lie(E(G))) ,

where we denoted byG0 the restriction ofG to S0 and we recall that D(G0)S = Lie(E(G)).

Remark 5.44.

1. ConsiderG0 ∈ BT/S0. We define a Zariski sheaf of sets on S, denoted by L , as follows.
Let U ⊂ S be an affine open subscheme of S. We define Γ(U,L ) to be the set of all
equivalence classes of linearly compatible prolongations, as in definition 4.49, of

V(G0)|U0
E(G0)|U0

to a vector subgroup V ′ ↪→ E(G0)S |U . Clearly this defines a sheaf on the affine open
subsets ofS. Since affine open subschemes form a basis for the topology ofS, the definition
of L can be extended to that of a sheaf on S.

2. By construction of E(G0)S we can define a canonical section Θ ∈ Γ(S,L ). By sheaf
properties it is enough to define it on sufficiently small affine open subschemesU ofS and
then check compatibility of all these sections. In particular we assume that U is affine and
p is nilpotent on U . Then, we define Θ|U to be the equivalence class of V(G), whereG is
any lift of G0|U0

to U . Indeed, if we denote by G1 and G2 any two lifts of G0|U0
to U ,

thanks to theorem 5.26, we obtain the following diagram

V(G1) E(G1)

V(G2) E(G2),

j

w v

i

where i ◦ w − v ◦ j is an exponential. Since E(G0)S |V = E(G2), this is exactly the
requirement of definition 4.49 to state that the two lifts lie in the same equivalence class.
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3. If G is a global lift of G0, then we have the canonical isomorphism E(G) ≃ E(G0)S .
Hence V(G) gives an element Θ ∈ Γ(S,L ), i.e. a distinguished vector subgroup in the
linear equivalence class of prolongations of V(G0).

4. Notice that, by proposition 4.57, the datum of V ↪→ E(G0)S which belongs toΘ is equi-
valent to the datumof an admissible filtrationFil1 ↪→ D(G0)S . In particular the knowledge
of the map V(G) ↪→ E(G0)S , forG a global lift ofG0, is equivalent to the knowledge of
V(G) ↪→ D(G0)S . Finally, from the definition of universal extension and of the crystal
E(G0), we can reconstruct

G ≃ E(G0)S/V(G).

Essentially the above, modulo checking that the quotient defines a Barsotti-Tate group
(verification which is carried out in [Mes72, Chapter V, theorem 1.6]), states that, from the
datum of an admissible filtration ofD(G0)S , one can recover the global liftG ofG0. This
is indeed the main idea used to construct the quasi-inverse to the functor of theorem 5.43.

6 Classification of p-divisible groups overOK

In this section we will review the classification of p-divisible groups overOK of Breuil and Kisin,
from [Kis07, Appendix A]. In fact we will introduce some technical lemmas and use them to
generalize the classification of Barsotti-Tate groups over a perfect field of characteristic p to that
of Barsotti-Tate groups over the ring of integers of a local field.

6.1 Witt vectors
In order to work over a finite extension K/Qp it is convenient to have some familiarity with
the formalism of Witt vectors, so we will dedicate some space to recall the basic definitions and
results. As a typographical convention, in the following sections, we will denote vectors using a
boldface character. Finally, throughout the following section, A will denote a commutative Fp-
algebra.

Remark 6.1 (Motivation). ConsiderK/Qp a finite and unramified extension. Denote by k :=
OK/pOK the residue field of K and by q := |k| its cardinality. Then there is a multiplicative
map [ · ] : k → OK , called the Teichmüller lift, with image µq−1(OK), the (q−1)st root of unity
of OK . In particular it is well known that any element a ∈ OK can be uniquely written via a
Teichmüller expansion

a =
∑
n∈N

[cn]p
n,

with cn ∈ k for all n ∈ N. The theory of Witt vectors allows the explicit computation of sums
and products between Teichmüller expansions, using only algebraic operations on the sequences
of elements of k. Clearly its interest doesn’t stop there, so we will highlight some other properties
of the construction.

Moreover we wish to remark that the following constructions can be carried out for any ring
A, though the most interesting results for us will be in caseA is a perfect Fp-algebra, i.e. an Fp-
algebra on which the map x 7→ xp is an automorphism. The results we will introduce in this
section revolve around this assumption, but we will highlight when it is not strictly necessary.
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Definition 6.2: Witt polynomials.
We define a family of polynomials {wn(x)}n∈N ⊂ Z[x] = Z[xi]i∈N by

w0(x) := w0(x0) := x0,

w1(x) := w1(x0, x1) := xp0 + px1,

...

wn(x) := wn(x0, . . . , xn) :=

n∑
i=0

pixp
n−i

i = xp
n

0 + pxp
n−1

1 + · · ·+ pn−1xpn−1 + pnxn.

Lemma6.3 ([SG80, Chapter II, §6, theorem 6]). For everyϕ ∈ Z[x, y] there exists a unique sequence
{φn}n∈N ⊂ Z[x,y], where x = {xn}n∈N and y = {yn}n∈N, such that, for all n ∈ N,

wn(φ0, . . . , φn) = ϕ (wn(x0, . . . , xn), wn(y0, . . . , yn)) .

Notation 6.4.
Denote by {Sn}n∈N and {Pn}n∈N the polynomials associated by lemma 6.3 to ϕ(x, y) = x+ y
and ϕ(x, y) = x · y respectively. Then we define, for a,b ∈ AN the following composition laws:

a+ b := (Sn(a,b))n∈N
a · b := (Pn(a,b))n∈N .

Theorem6.5 ([SG80, Chapter II, §6, theorem7]). The composition laws onAN defined in notation 6.4
make it into a commutative unitary ring.

Definition 6.6: Ring of Witt vectors.
We define the ring of Witt vectorswith coefficients inA, denoted byW (A), to be the commutative
unitary ringAN endowed with the composition laws defined in notation 6.4.

Remark 6.7. By definition, the map

W : W (A) AN

a (wn(a))n∈N

is a ring homomorphism. Moreover it is easy to check that it is a monomorphism if p is not a zero
divisor and an isomorphism as soon as p is invertible.

Definition 6.8: Frobenius and Verschiebung.
SinceA is of characteristic p we can define onW (A) the following two maps

V : W (A) W (A)

(a0, a1, . . .) (0, a0, a1, . . .)
and F : W (A) W (A)

(a0, a1, . . .) (ap0, a
p
1, . . .).

It can be easily shown that the first map, called Verschiebung (which we recall is the German word
for shift), is additive, whereas the second, called Frobenius, is a ring homomorphism.

Definition 6.9: (Strict) p-ring.
A ringB is called p-ring iff it is separated and complete for the topology induced by a decreasing
collection of ideals {bi}i≥1 such that bnbm ⊂ bn+m for all n,m ≥ 1 and B/b1 is a perfect
Fp-algebra (hence p ∈ b1).

We say thatB is a strict p-ring iff it is a p-ring and bi = piB for all i ≥ 1 and p : B → B is
an injective map.
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Remark 6.10. Notice that a strict p-ring is a p-adically separated and complete ring such that
B/pB is a perfect Fp-algebra.

Remark 6.11. Since A is of characteristic p we have the identities V F = FV = p. Moreover,
in caseA is perfect, we see that pnW (A) = V nW (A), since p · (a0, a1, . . .) = (0, ap0, a

p
1, . . .).

This means that the p-adic topology ofW (A) corresponds to its natural product topology. As a
consequence we see thatW (A) ≃ lim←−n∈NW (A)/(pn). Then, sinceW (A)/(p) ≃ A, this also
means thatW (A) is a strict p-ring.

Lemma 6.12 ([BC09, Lemma 4.2.2]). Let B be a p-ring. There is a unique set theoretic section
rB : B/b1 → B to the reduction map such that rB(xp) = rB(x)

p for all x ∈ B/b1. Moreover rB
is multiplicative and rB(1) = 1.

Definition 6.13: Teichmüller lift.
For a ringA, we can define the following section to the reduction map

[ · ] : A W (A)

a [a] := (a, 0, 0, . . .) ,

where [a] is called the Teichmüller lift of a.

Remark 6.14.
1. Reducing to an appropriate universal case it is easy to prove that

(x0, x1, x2, . . .) · (y0, 0, 0 . . .) = (x0y0, x
p
1y0, x

p2

2 y0, . . .)

inW (A). Hence [ · ] is a multiplicative map and satisfies conditions of lemma 6.12.

2. IfB is a strict p-ring endowed with the p-adic topology, each b ∈ B can be written as

b =
∑
n∈N

rB(bn)p
n

with bn ∈ B/b1 = B/pB. Let’s recall that B is complete and separated with respect
to the p-adic topology. As a consequence the above series converges and the expansion is
unique.

3. LetA be a perfect Fp-algebra, then any element x ∈W (A) can be uniquely written as

x =
∑
n∈N

[cn]p
n,

where cn ∈ A. We will refer to this expansion as the Teichmüller expansion in the future.
Moreover, given x = (an)n∈N, one can also write it as

x =
∑
n∈N

V n([an]).

Then, sinceA is perfect, F is invertible onW (A) too and we obtain V n = pnF−n. Then
we can rewrite the above sum as

x =
∑
n∈N

pnF−n([an]) =
∑
n∈N

[ap
−n

n ]pn.

All combined we can explicitly compute the coefficients of the Teichmüller expansion of
x = (an)n∈N, via [cn] = [ap

−n

n ].
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Proposition 6.15 ([BC09, Proposition 4.2.3]). If A is a perfect Fp-algebra and B is a p-ring, then
the natural "reduction" map

Hom (W (A), B) Hom (A,B/b1)
∼

is an isomorphism. More generally, for any strict p-ring B, the natural map

Hom (B, B) Hom (B/(p), B/b1)∼

is bijective for every p-ringB.

Remark 6.16.
1. Let’s notice that, by the previous comments, we haveW (A)/(p) = A, which allows the

definition of the first map above. Moreover the above shows that B andW (B/pB) satisfy
the same universal property in the category of p-rings. As a consequence all strict p-rings
are isomorphic toW (A) for a perfect Fp-algebraA.

2. The inverse to the second bijection has the following form. Let h ∈ Hom (B/(p), B/b1)
and write an element x ∈ B using its expansion via rB . The induced map on B acts by

x =
∑

n∈N rB(xn)p
n

∑
n∈N rB(h(xn))p

n.

3. Using the above proposition we can recover the theory of maximal unramified subexten-
sions for finite extensions K/Qp. Fix K and let k := Ok/(πK) be its residue field. In
fact OK is a p-ring, when considered with the filtration given by

{
πi
K

}
i≥1

. Then there
is a unique map of rings α : W (k) → OK lifting the isomorphismW (k)/(p) ≃ k ≃
OK/(πK). Since p has image in the maximal ideal ofOK , the map α is local and injective.
This means that OK/(p) is aW (k)/(p) = k vector space with basis (1, πK , . . . , πe

K),
where e = e(K/Qp) is the absolute ramification index ofK . Since OK is complete and
separated with respect to the p-adic topology, by successive approximations, we see that
the above is aW (k)-basis ofOK , which is then a freeW (k)-module of rank e. As a con-
sequence alsoK = OK [1/p] is aW (k)[1/p] =: K0 vector space of dimension e. Then
K/K0 is a field extension of degree e, which is totally ramified since the two fields have
isomorphic residue fields. Then we see that the Witt vectors construction allows one to
constructK0 the maximal unramified subextension of any finite extension ofQp.

4. We can finally notice that the isomorphism W (k) ≃ OK0 preserves Teichmüller lifts.
Hence, recalling the motivational remark at the beginning of the section, we can use the
definition of sum and product via Witt polynomials onW (k) to compute the operations
on Teichmüller expansions onOK0

.

6.2 Classification of p-divisible groups overOK

This section will follow [Kis07, Appendix A]. Fix k a perfect field of characteristic p and denote
by W := W (k) its ring of Witt vectors and by K0 := W [1/p] its field of fractions. Finally
fix K/K0 a finite totally ramified extension. We denote by π a fixed uniformizer of K and by
E(u) ∈W [u] its (Eisenstein) minimal polynomial.

Remark 6.17. Let T be a scheme andG ∈ BT/T . The formation of D(G) and D∗(G) is com-
patible with all base changes. In particular, if p = 0 on T , we can pullG back by the Frobenius φ
on T . Then the relative Frobenius onG gives a mapG→ φ∗(G) hence a map of crystals

φ∗(D∗(G)) D∗(φ∗(G)) D∗(G),∼
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where the first is an isomorphism since, as recalled above, the formation of D∗(G) commutes
with base change.

Notation 6.18.
In the followingwewill mainly be interested in the evaluation of crystals on objects. In particular,
given a schemeT0,G0 ∈ BT/T0 andT0 ↪→ T ∈ Crys(T0), wewill be interested in the evaluation
D∗(G0)T (T ) = D∗(G0)T0↪→T (T ), where D∗(G0)T is defined in notation 5.40 and its evalu-
ation in remark 4.65. Hence we introduce the shorter D∗(G0)(T ) := D∗(G0)T (T ). Moreover,
if T = Spec(A) is affine, we introduce the notation D∗(G)(A) for D∗(G)(T ). Finally we can
notice that, fixed G, the functor D∗(G), induced by a sheaf on Crys(T0), is contravariant when
evaluated on schemes, but covariant on rings.

Remark6.19. Suppose thatT0 is a schemeoverW and thatp = 0onT0. ConsiderG0 ∈ BT/T0
and T0 ↪→ T ∈ Crys(T0/W ), where we recall that we required p to be locally nilpotent on T ,
andG a lift ofG0 to T . By construction ofD∗ we have an isomorphism

D∗(G0)(T ) D∗(G)(T ).∼

Moreover, recalling proposition 5.24, theOT -moduleD∗(G)(T ) sits in an exact sequence

0 (Lie(G))
∨ D∗(G)(T ) Lie(GD) 0.

We recall that elements of Crys(X/S) are defined by locally nilpotent sheaves of ideals. In what
follows, though, we want to evaluate crystals on surjections of p-adically complete rings, whose
kernels are endowed with divided powers (not necessarily nilpotent).

Definition 6.20.
Let A ↠ A0 be a surjective homomorphism of p-adically complete and separated Zp-algebras
whose kernel is equipped with divided powers, compatible with those on pZp. TakeG ∈ BT/A0

and denote byGn the restriction ofG toA0/p
nA0. Then we define

D∗(G)(A) := lim←−
n∈N

D∗(G1)(A/p
nA).

Remark 6.21. Notice that, in the above definition, A/pnA ↠ A0/p
nA0 has kernel equipped

with divided powers. In fact it is the projection of the kernel of A ↠ A0/p
nA0, over pnA.

Thanks to lemma 4.9 this ideal has divided powers. Indeed pA and ker(A→ A0) have compat-
ible divided powers and (pn) is a sub-P.D. ideal of their sum. Analogously we see that the kernel
of A/pnA ↠ A0/p

mA0 has divided powers for allm ≤ n. Now, combining this remark with
remark 6.19, we see that the above definition could have easily been swapped out with

D∗(G)(A) := lim←−
n≥m

D∗(Gm)(A/pnA)

by cofinality of the family n ≥ m in N. Moreover we can notice that, in case p is not nilpotent
on A0, the theory of Messing (see definition 5.33), doesn’t suffice to define the crystal D∗(G).
Though, for our purpose, it is enough to define the evaluation D∗(G)(A), for which it suffices
to consider the crystal associated to G1 ∈ BT/(A0/pA0). To sum up, even though we cannot
construct the crystal D∗(G), its evaluation D∗(G)(A) can be defined for any G ∈ BT/A0 and
any surjectionA↠ A0 as above.
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Remark 6.22 (Rigidity of evaluations). Take a commutative diagram of rings

A B

A′ B′,

where both horizontal arrows are epimorphisms whose kernel is endowed with divided powers
and the right map is a morphism of divided power rings. It corresponds to amorphism of divided
power schemes

Spec(A) =: U V := Spec(B)

Spec(A′) =: U ′ V ′ := Spec(B′).

f f (6.1)

Consider now G ∈ BT/U , so that f∗G ∈ BT/U ′. We want to reduce, thanks to rigidity of
crystals, the evaluation D∗(f∗G)(B′) to that of D∗(G)(B). Indeed, following the construction
of remark 5.34, we obtain a pushout diagram

U Ṽ

U ′ V ′,

f f

where Ṽ := V ′⨿U ′ U . Then remark 5.34, i.e. stability of crystals under base change, implies the
isomorphism of Zariski sheaves

f∗D∗(G)U↪→Ṽ ≃ D∗(f∗G)U ′↪→V ′ .

By the universal property of pushouts and commutativity of diagram (6.1) we obtain the following
commutative diagram

U V

U Ṽ .

α

Noticemoreover that, by the explicit construction of Ṽ carried out in definition 4.74, themorph-
ismα is a morphism of divided power schemes. Finally we can conclude, since crystals are special
sheaves on Crys(OK), as of definition 4.69, which implies that α∗D∗(G)B↠A = D∗(G)U↪→Ṽ
as Zariski sheaves. Then, taking evaluations, we obtain

D∗(f∗G)(B′) ≃ f∗D∗(G)(B).

Remark 6.23. We will now introduce some technical lemmas, which will play a crucial role in
the proof of proposition 6.38, the main result of this section. In fact these lemmas allow, in com-
bination with theorem 5.43, to lift not only a Barsotti-Tate group along a thickening with divided
powers, but also some additional structure, i.e. a Frobeniusmorphism and a filtration, on the eval-
uation ofD∗. In fact, this extra semi-linear algebra structure is going to be of vital importance in
the proof.

Lemma 6.24 ([Kis07, Lemma A.2]). LetA↠ A0 be a surjection of p-adically complete and separated
localZp-algebras with residue field k and kernelFil1A equipped with divided powers. Suppose moreover
that
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1. A is p-torsion-free and it is equipped with an endomorphism φ : A → A lifting the Frobenius
endomorphism onA/pA;

2. the following map, induced on the pullback, is surjective

idA⊗φ/p : φ∗(Fil1A) A.

If G ∈ BT/A0 we write Fil1 D∗(G)(A) ⊂ D∗(G)(A) for the preimage of (Lie(G))∨ inside
D∗(G)(A0). Then the restriction of φ : D∗(G)(A) → D∗(G)(A) to Fil1 D∗(G)(A) is divisible
by p and the following induced map is a surjection

1⊗ φ/p : φ∗ Fil1 D∗(G)(A) D∗(G)(A).

Remark 6.25. Here are the main ingredients of the proof.

1. Given an ideal I ◁ A with divided powers, then φ(I) ⊂ pA. In fact φ lifts the Frobenius
onA/pA, hence for all x ∈ A there exists some a ∈ A such that φ(x) = xp + pa. Then

φ(x) = xp + pa = γp(x) · p! + pa ∈ pA.

2. Let G̃ be a lift ofG toA, then we have

Fil1 D∗(G̃)(A) = (Lie G̃)∨ + Fil1A · D∗(G̃)(A).

3. LetH ∈ BT/ Spec(W ). Denote byH0 the restriction ofH to k. ThenW ↠ k satisfies
the hypothesis of our lemma, and the kernel Fil1(W ) = (p) is equipped with divided
powers by item 4 of example 4.4. Then, using the theory of Dieudonné modules, one can
see that themoduleD∗(H)(W ) = D∗(H0)(W ) is naturally isomorphic to the Dieudonné
module ofH . Moreover, if we denote by V its Verschiebung, we have

(LieH)∨ + pD∗(H)(W ) = V D∗(H)(W ),

i.e. that V D∗(H)(W ) = Fil1 D∗(H)(W ).

Definition 6.26: Special ring.
A special ring A is a p-adically complete, separated, p-torsion-free, local Zp-algebra equipped
with an endomorphism φ lifting the Frobenius onA/pA. Moreover we call map of special rings a
morphism of Zp-algebras between special rings which is also compatible with φ.

Definition 6.27.
Let A be a special ring. We define the category CA whose objects are finite, free A-modulesM
equipped with a semilinear Frobenius map φ : M → M and an A-submoduleM1 ⊂ M such
that φ(M1) ⊂ pM and such that the map

idA⊗φ/p : φ∗(M1) M

is surjective. Its morphisms are morphisms of A-modules compatible with the Frobenius and
submodules.

Remark 6.28. Notice that lemma 6.24 allows to endow, forG ∈ BT/A0 andA↠ A0 as in the
hypothesis, the moduleD∗(G)(A) with the structure of an object in CA.
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Definition 6.29.
Consider a map of special rings A → B andM ∈ CA. ThenM ⊗A B ∈ CB , when equipped
with the induced Frobenius and setting (M ⊗A B)1 to be the image ofM1 ⊗A B inM ⊗A B.

Lemma 6.30 ([Kis07, Lemma A.4]). Let h : A ↠ B be a surjection of special rings with kernel
J . Suppose that, for all i ≥ 1, φi(J) ⊂ pi+jiJ , where {ji}i≥1 is a sequence of integers such that
limi→∞ ji =∞. ConsiderM,M ′ ∈ CA and

θB : M ⊗A B M ′ ⊗A B
∼

an isomorphism in CB . Then there exists a unique isomorphism of A-modules θA : M → M ′ lifting
θB and compatible with φ.

Remark6.31. As beforewewill only present themain idea behind the proof. In this case, starting
from any lift θ0 : M → M ′ of θB , we construct a succession of morphisms θi. They can be
constructed in such a way that the following diagram commutes for all i

φ∗(M1) φ∗(M ′
1)

M M ′.

φ∗( θi|M1
)

1⊗φ/p

θi+1

As a consequence θi ◦ (φ/p)(x) = (φ/p) ◦ θi−1(x) for all x ∈M1. By surjectivity of idA⊗φ/p
this tells us that (θi − θi−1) (M) ⊂ pjiM . Finally, the fact that ji →∞ allows to obtain a well
defined limit.

In order to apply the above results to the proof of the main theorem of the section we still need
some remarks and definitions. Let’s start by defining the ringwhich allows to overcome the prob-
lem of definition of divided powers on the maximal ideal of OK for a ramified extension, see
item 4 of example 4.4.

Definition 6.32.
ConsiderW as a divided power ring, endowing the maximal ideal (p) with the divided power
structure defined in item4of example 4.4. ConsiderW [u] as aW -algebra, and takeDW [u](E(u))
its divided powers envelope, constructed in theorem 4.18. Let’s notice that, as outlined in re-
mark 4.19, we can take J ◁ DW [u](E(u)) as the ideal generated by E(u), p and their divided
powers, also called the P.D. ideal generated by E(u) and p. We denote by S the p-adic com-
pletion of DW [u](E(u)) and by Fil1 S ⊂ S the closure of the ideal generated by E(u) and its
divided powers.

Remark 6.33. The ring S is equipped with an endomorphism φ lifting that on S/pS. It is, in
fact, induced by the Frobenius F onW [u] which acts naturally onW and by u 7→ up. In order
to lift it we use the universal property of the divided powers envelope. In particular we need to
notice that F sends (E(u)) into J which, as stated before, contains p. But this is clear, since
F sends pW [u] to pW [u] and, since the P.D. ideal generated byE(u) inDW [u](E(u)) contains
divided powers, it sendsE(u) in the P.D. ideal generated byE(u) and p, i.e. J . Then, by universal
property of divided powers envelope, we obtain the desired lift φ as the unique map making the
following diagram commute

DW [u](E(u))

(W [u], (E(u), p)) (W [u], (E(u), p)) ⊂ DW [u](E(u)).

φ

F
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Then this extends to S by continuity with respect to p-adic topology and it lifts the Frobenius
defined on S/pS = DW [u](E(u))/(p).

Notation 6.34.
Thanks to lemma 4.13, the idealFil1(S) is equipped with divided powers. Then, by remark 6.25,
we have φ(Fil1 S) ⊂ pS, which allows us to define φ1 := φ/p : Fil1 S → S.

Remark 6.35. Wewill apply lemma 6.30 in the situationwhere no rational integer of our ring is a
zerodivisor, J is equipped with a divided power structure and there exists a finite set of elements
x1, . . . , xn ∈ J such that J , in the p-adic topology, is topologically generated by the xi and their
divided powers and such that φ(xi) = xpi for all i. Then the integers ji of lemma 6.30 can be
taken to be νp

(
(pi − 1)!

)
− 1. Since φ is a continuous endomorphism in the p-adic topology, it

suffices to prove the statement for elements of the type

x := x[m1] · · · · · x[mn]
n ,

for arbitrarym1, . . . ,mn ∈ N. Here we can notice that φ(x[mi]
i ) = (xpi )

[mi] for all i. Hence

φi(x) =

n∏
k=1

φi
((
xk
)[mk]

)
=

n∏
k=1

(
φi(xk)

)[mk].

Let’s now fix a k withmk > 0. Since J is equipped with divided powers we have

φi(xk) = xp
i

k = xk · γpi−1(xk) · (pi − 1)!.

Now, from condition 2 of definition 4.1, we obtain(
φi(xk)

)[mk] =
(
x
[pi−1]
k

)mk

(
(
pi − 1

)
!)mk · x[mk]

k .

Since xk and all its divided powers are in J , we see that (φi(xk))
[mk] ∈ pνp((p

i−1)!)J . From the
previous discussion, this claim holds for any x = x

[m1]
1 · · · · · x[mk]

k , hence for all x ∈ J .

Definition 6.36.
We denote by BTφ

/S the category whose objects are finite free S-modulesM equipped with an
S-submodule Fil1M and a φ-semilinear map φ1 : Fil1M →M such that

1. Fil1 S ·M ⊂ Fil1M and the quotientM/Fil1M is a freeOK-module;

2. the map idS ⊗φ1 : φ
∗ (Fil1M)↠M is surjective.

Remark 6.37. Notice that anyM ∈ BTφ
/S is equipped with a φ-semilinear map φ : M → M

such that, on Fil1M , we have φ/p = φ1. More explicitly φ is defined by

φ(x) := φ1 (E(u))
−1
φ1(E(u)x).

In fact φ1(E(u)) is invertible in S. To show this we recall that, by definition, φ1 is φ-semilinear
onW [u], and thatW [u] embeds in S. More explicitly we need to show that the element

φ1(E(u)) =
uep

p
+ φ1(ae−1)u

(e−1)p + · · ·+ φ1(a1)u
p︸ ︷︷ ︸

x

+φ1(a0)

is invertible inS. To do so it suffices to show thatφ1(a0) ∈ S× and that x is nilpotent modulo p.
In fact, in such case, since S is complete with respect to the p-adic topology, we can compute an
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inverse of φ1(E(u)) in S via successive approximations (essentially in the same way one proves
this for power series). Let’s start with x. We want to prove that a certain power xn of x is in
the topological closure of the P.D. ideal generated by E(u) and p in S, let’s denote it Ĵ . Indeed
Ĵ , thanks to lemmas 4.9 and 4.10, has divided powers, from which we would deduce xnp =
p!γp(x

n) ∈ pS. Notice, moreover, that ue ∈ Ĵ , since E(u) is Eisenstein. Then we can also
notice that each term of xe is either divided by a power of uep/p or a power of ue. But uep/p =
(p!/p)γp(u

e) = (p− 1)!γp(u
e). Then this means that

xe ∈ (γp(u
e), ue) ⊂ Ĵ

since Ĵ contains ue and its divided powers. With regards to φ1(a0) we need to show that it is
invertible modulo p. But this is true, since φ(p) = p onW , hence on S, and a0 = p · α, for
α ∈ W×, since E(u) is Eisenstein. In fact this grants that φ1(a0) = φ(pα)/p = φ(α). Since
α ∈ W and φ lifts the Frobenius onW , which itself lifts the Frobenius on k, we see that the
image of α is invertible inW/pW ≃ k, and φ(α) too, which allows us to conclude.

Proposition 6.38 ([Kis07, Proposition A.6]). There is an exact contravariant functor

M : BT/OK BTφ
/S

G D∗(G)(S) =:M(G).

If p > 2 this functor is an anti-equivalence, whereas if p = 2 it induces an anti-equivalence of the
corresponding isogeny categories.

Proof. We start by showing that this functor actually takes values in BTφ
/S . We need to show

thatM(G) = D∗(G)(S) has a structure of object in BTφ
/S , for which it is enough to check that

S → OK satisfies the hypothesis of lemma 6.24. Notice that the map S → OK is induced by
W [u] ↠ OK which is a surjection, as remarked before. Then, by construction, we see that S ↠
OK is surjective too. It is also clear that both S andOK are p-adically complete, separated, local
Zp-algebras. Moreover, by definition, ker(W [u]→ OK) = (E(u)). Then, by construction ofS
and completeness ofOK , we see thatFil1 S, the kernel ofS ↠ OK , as seen in notation 6.34, is the
P.D. ideal topologically generated byE(u), hence it is equipped with divided powers. Moreover,
by construction, it is clear that S is p-torsion-free and, thanks to remark 6.33, that it is equipped
with an endomorphism lifting the Frobenius on S/pS. Finally we are left to prove that the map

idS ⊗φ/p : φ∗(Fil1 S) S

is surjective. Here, thanks to the argument in remark 6.37, we easily conclude. In fact we see that,
for all s ∈ S,

s · (φ1(E(u)))
−1 ⊗ E(u) s.

The construction of the quasi-inverse M 7→ G(M) is definitely more tricky and we will
concentrate only on the case p > 2, leaving the rest of the proof to [Kis07]. It will require the use
of classical Dieudonné theory to construct a Barsotti-Tate group over k associated to a module
M ∈ BTφ

/S and then to iteratively lift it from k = OK/πOK toOK . This difficulty is due to the
fact that, in general, the maximal ideal ofOK , i.e. the kernel ofOK ↠ k, does not admit divided
powers. Then our strategy to lift the classical construction will be to proceed iteratively, redu-
cing the above projection to a sequence of smaller projections, whose kernels all have nilpotent
divided power structures. For this process the choice of the right ring, i.e. S, will be crucial. In
particular those lifting steps will make use of Grothendieck-Messing deformation theory to lift
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the Barsotti-Tate group, and of the previous technical lemmas to lift the structure of module in
BTφ

/S associated to the p-divisible group via the evaluationD∗(G)(S).
Let’s now start the proof by introducing the necessary notation: let i vary in 1, . . . , e and

set Ri := W [u]/(ui). Clearly Ri is equipped with a Frobenius endomorphism φ given by the
usual one onW and u 7→ up on the indeterminate. These are all S-algebras. In fact, by universal
property of divided powers envelopewe have a ring homomorphismS → Ri given by the unique
map associated to

W [u] Ri

u u.

This map is compatible with φ and, by uniqueness, also the induced map on S is. Moreover also
OK/(π

i) is an Ri-algebra by u 7→ π, seeingW = OK0
⊂ OK . As one can check writing the

elements of OK in Teichmüller expansion, the map Ri ↠ OK/(π
i) is a surjection with kernel

pRi, which is equipped with divided powers. In order to show this let’s recall that, by item 4
of example 4.4, the ideal (p) ◁ W is endowed with divided powers. Being a principal ideal we
can invoke lemma 4.12 which grants that pW [u] has a divided power structure. Finally it can be
easily checked that we can apply lemma 4.9 endowing pRi with a divided powers structure. Then,
given a p-divisible group Gi ∈ BT/(OK/π

iOK), we can consider its evaluation D∗(Gi)(Ri)
by definition 6.20. Following the notation of lemma 6.24 we denote by Fil1 D∗(Gi)(Ri) the
preimage of (LieGi)

∨ ⊂ D∗(Gi)(OK/π
iOK) in D∗(Gi)(Ri). Then, as noted in remark 6.28,

D∗(Gi)(Ri) ∈ CRi
.

We now define the moduleMi :=M ⊗S Ri, which is a restriction of scalars of our original
one and it is also equipped with the diagonal action ofφ. We setFil1Mi ⊂Mi to be the image of
Fil1M inMi. Notice that the above corresponds to defining Fil1Mi := Fil1M ⊗S Ri. Then,
by right exactness of tensor product,

idS ⊗φ1 : φ
∗(Fil1M) M

induces a surjective map φ∗(Fil1Mi) ↠ Mi for all i. In other words we have just seen that
Mi ∈ CRi

for all i ∈ [1, e].
With all this in mind we can start with the lifting process.

1. At first we need to construct, using classical Dieudonné theory, a Barsotti-Tate group G1

on k = OK/πOk fromM1. Let’s denote byF : M1 →M1 the map induced byφ : M →
M . Notice that R1 = W is a PID, which implies that φ∗(Fil1M1) is also free of rank
bounded by that ofM1. Then, base changing to k, we see that both sides of the surjective
map φ∗(Fil1M1) ↠ M1 have the same (finite) rank, which means that the map is an
isomorphism. Now we consider the composition

M1 φ∗(Fil1M1) φ∗(M1) M1,
∼ ∼

where the first arrow is just the inverse of the above isomorphism, the second map is in-
duced by the inclusion Fil1M ↪→ M and the third one is given by a ⊗m 7→ am. This
composition gives a φ−1-semilinear map V : M1 →M1 such that FV = V F = p. Let’s
denote by G1 the Barsotti-Tate group on k associated to this Dieudonné module, see e.g.
[BC09, Proposition 7.2.6] for a reference. In particular the isomorphism of remark 6.25

D∗(G1)(W ) M1
∼

is compatible with Frobenius. Moreover, thanks again to remark 6.25, Fil1 D∗(G1)(W )
can be identified with V D∗(G1)(W ), which grants that the isomorphism is also compat-
ible with filtrations, i.e. it is an isomorphism in CR1

.
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2. We now iteratively lift this construction. Assume, for i ∈ [2, e], that we have an isomorph-
ism

D∗(Gi−1)(Ri−1) Mi−1
∼ (6.2)

compatible with Frobenius and filtrations, i.e. an isomorphism in CRi−1
. Notice now that

the kernel ofRi ↠ OK/π
i−1OK is (ui−1, p). Since both ui−1Ri and pRi are endowed

with (compatible) divided power structure, we can invoke proposition 4.11 and take the
evaluationD∗(Gi−1)(Ri). Again by lemma 6.24 we obtain that the just defined evaluation
is in CRi . Moreover, we can notice that the following is a commutative diagram, whose
rightmost map is a divided power morphism

OK/π
i−1OK Ri

OK/π
i−1OK Ri−1.

Then, applying remark 6.22, we obtain that

D∗(Gi−1)(Ri−1) ≃ D∗(Gi−1)(Ri)⊗Ri
Ri−1.

Wenowrecall that alsoMi ∈ CRi and thatMi−1 ≃Mi⊗RiRi−1 bydefinition. Finallywe
notice that the kernel ofRi ↠ Ri−1 is generated by u, on which φ acts by u 7→ up. Then,
thanks to remark 6.35 and the fact that, by induction, the isomorphism in equation (6.2) is
a morphism in CRi−1

, we can apply lemma 6.30 to the surjectionRi ↠ Ri−1. We obtain
a lift of the isomorphism in equation (6.2) to an isomorphism

D∗(Gi−1)(Ri) Mi
∼

compatible with Frobenius. Finally, since the kernel of OK/π
iOK ↠ OK/π

i−1OK has
nilpotent divided powers, we can invoke theorem 5.43 and obtain that there is a unique
Gi ∈ BT/(OK/π

iOK) liftingGi−1 and such that (LieGi)
∨ ⊂ D∗(Gi−1)(OK/π

iOK)
is equal to the image of FiliMi under the composite

Fil1Mi ⊂Mi D∗(Gi−1)(Ri) D∗(Gi−1)(OK/π
iOK).∼

Then, by construction, we obtain that the isomorphism D∗(Gi)(Ri) ≃ Mi, where we
recall the implicit use of remark 6.19, is compatible also with filtrations, i.e. is in CRi

.

3. Finally we need to reiterate the above argument to the surjection S ↠ Re. At first we
need to show that the kernel of the map S ↠ OK/(π

e) ≃ OK/(p) is equipped with
divided powers. Since it is the p-adic completion of the kernel of themapDW [u](E(u)) ↠
OK/(p), induced byW [u] ↠ OK/(p), we can study this and then apply lemma 4.13. But
this kernel is the P.D. ideal topologically generated by E(u) and p hence it is equipped
with divided powers by construction ofDW [u](E(u)). Then we can apply lemma 6.24 and
obtain that the evaluationD∗(Ge)(S) is inCS . As before, we have a commutative diagram,
whose rightmost map is a divided power morphism

OK/pOK S

OK/pOK Re.
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Then, applying remark 6.22, we obtain that

D∗(Ge)(Re) ≃ D∗(Ge)(S)⊗S Re.

We now recall that alsoM ∈ CS and thatMe ≃ M ⊗S Re by definition. Now, since the
kernel of S ↠ Re is topologically generated by ue and its divided powers, we can reason
as in remark 6.35 and invoke lemma 6.30. As a consequence we lift the isomorphism

Me D∗(Ge)(Re)
∼

in CRe
to an isomorphismM ≃ D∗(Ge)(S) compatible with φ. Now we need to lift the

groupGe toOK for which we assume that p > 2. In order to do so we notice that, for all i,
OK/(p

i) ↠ OK/(p
i−1) has kernel equipped with divided powers, defined as in item 3 of

example 4.4. Moreover, since OK is p-adically complete, thanks to [Jon95, Lemma 2.4.4]
or to lemma 3.56, we see that the datum of a Barsotti-Tate group onOK is equivalent to the
datum of a compatible sequence of Barsotti-Tate groupsGi onOK/(p

i). Here compatible
means that the restriction of Gi to OK/(p

i−1) is isomorphic to Gi−1. Then, invoking
again theorem 5.43, we can construct this sequence by induction, taking at each time the
groupGi determined by (LieGi)∨ ⊂ D∗(Ge)(OK/p

iOK), given by the image ofFil1M
under

M D∗(Ge)(S) D∗(Ge)(OK/p
iOK).∼

By functoriality of D∗(Ge) this gives rise to a compatible family Gi, which in turn, by
[Jon95, Lemma 2.4.4], defines G(M) ∈ BT/OK such that (LieG)∨ ⊂ D∗(Ge)(OK) is
equal to the image of FiliM under

M D∗(Ge)(S) D∗(Ge)(OK).∼

At last we are only left to prove that the above morphisms are quasi inverses to each other. It is
clear, by construction, thatM ≃ M(G(M)). For the other direction we see, by induction on
i = 1, . . . , e, that uniqueness in lemma 4.13 grants that, given any G ∈ BT/OK , the group
Gi(M(G)) is isomorphic to the base change ofG toOK/(π

i). Analogously, for i ∈ N, unique-
ness in lemma 4.13 grants that Gi(M(G)) is isomorphic to the base change of G to OK/(p

i).
Then, invoking again [Jon95, Lemma 2.4.4], we can conclude that G(M(G)) ≃ G and the two
functors are quasi-inverses to each other. ■

Now that we have proved this theorem let’s compute some simple examples. These will also play
an important role in what follows.

Example 6.39. We want to computeM(G) := D∗(G)(S) forG = Gm(p) and its dualGD =

Qp/Zp, both seen in BT/OK . Let’s denote by G̃ a lift of G to S. Then, via definition 6.20 and
thanks to remark 6.19, we obtain thatM(G) ≃ D∗(G̃)(S). Still by remark 6.19, we see that
M(G) sits in the following short exact sequence

0 (Lie G̃)∨ M(G) Lie(G̃D) 0. (6.3)

Moreover, recalling remark 4.45, we have (Lie G̃)∨ = ωG̃ and Lie(G̃D) = ω∨
G̃D

. Also, when
determining the filtration, it is useful to keep in mind remark 6.25, where we stated that

Fil1M(G) = (Lie G̃)∨ + Fil1 S ·M(G).

Then we need to compute the conormal sheaf ωG for bothGm(p) andQp/Zp. Let’s notice that,
ifG = lim−→v∈NGv , we can compute ωG = lim←−v∈N ωGv

. We’ll start by arguing over Z, then we
will base change to S.
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1. Let’s start withG = lim−→µpv and denoteGv := µpv . As seen in example 2.20 this is affine
over Z and it is given by

µpv = Spec(Z[T ]/(T pv

− 1)) = Spec(Av).

Then we recall that the closed immersion of the pointed scheme Gv corresponds to the
augmentation morphism

ε̃ : Z[T ]/(T pv − 1) Z.

Denoting by I the augmentation ideal ofAv , the sheaf ωGv is theOSpec(Z)-module I/I2
associated to I/I2. We can reduce its computation to that of I/I2. To this aim we recall
[Liu06, §6.1, proposition 1.8(d) and example 1.10] which let us compute

Ω1
Av/Z =

AvdT

AvpvT pv−1dT
= Av/(p

v)
dT

T
.

Nowwe can invoke [Stacks, Lemma 0474] (takingS = Z = Spec(Z) andX = Gv), since
iv = Spec(ε̃) admits the structure morphism as a left inverse. This grants that

ωGv
= i∗vΩ

1
Av/Z = Z/(pv)

dT

T
.

2. Let’s now analyse GD = lim−→Z/pvZ, where we will denote GD
v = Z/pvZ. We can use

lemma 2.32 (as we did in example 2.36) to obtain that this is an étale group scheme over
Z. In fact we need to consider fiber by fiber what happens, but we are just base changing a
finite product of copies of Z to the residue field. Then [Stacks, Section 00U0] grants that
ΩGD

v /Z = 0 and finally that ωGD
v

= i∗vΩGD
v /Z = 0 thanks, as before, to [Stacks, Lemma

0474] (again, taking S = Z = Spec(Z), X = GD
v and noticing that iv = Spec(ε̃) admits

the structure morphism as a left inverse).

Now we can base change to S. To do so it suffices to tensor product our Z-algebras with S and
obtain G̃v and G̃D

v for all v. Then, since the base change of an étale morphism is still étale (see for
example [Stacks, Lemma 02GO]), G̃D

v is étale over S. Then ωG̃D
v
= 0 for all v, hence ωG̃D = 0.

With regards to G̃v the above computations carry faithfully to the base change to S, giving us

ωG̃ = lim←−
v∈N

ωG̃v
= lim←−

v∈N
S/(pn)

dT

T
= S

dT

T
,

since S is p-adically complete. We now have everything we needed to finally computeM(G),
Frobenius and filtration.

1. Let G = Gm(p), then filling equation (6.3) with the terms we computed above, we ob-
tain M(G) := D∗(G)(S) ≃ S dT

T . Moreover Fil1M(G) = S dT
T , since it contains

(Lie G̃)∨ = ωG̃ = S dT
T . Finally we also get that φ1 has to coincide with φ, being φ-

semilinear and defined on S =M(G).

2. Let’s now consider GD . Again, by equation (6.3), we obtainM(GD) := D∗(GD)(S) =

S dT
T . Though now (Lie G̃D)∨ = 0, henceFil1M(GD) = Fil1 S ·S dT

T . And this implies
also that our φ-semilinear map φ1 coincides with φ/p on Fil1 S.
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7 Comparison morphisms
In this section we will finally put all the pieces together to construct the comparison morphisms
we hinted at in the introduction. To reach this goal we will still need to construct the ring Bcris

and give an introduction to the construction of period rings, carried out by Fontaine.
As of notation, we will fix the following. We will denote, for this section, by K a complete

discrete valuation field, with perfect residue field k of characteristic p and uniformizer π, by
W := W (k) the ring of Witt vectors with coefficients in k and by K0 := W [1/p] its field of
fractions. Wewill fix e := [K : K0] the absolute ramification index ofK , we denote byK a fixed
separable closure ofK and byCK its completion. Finally we will denote by GK := Gal

(
K/K

)
the absolute Galois group ofK and notice that its action onK extends toCK by continuity.

7.1 Galois representations
Definition 7.1: p-adic representation.
A p-adic representation of a profinite group Γ is a representation ρ : Γ → AutQp

(V ) of Γ on a
finite-dimensional Qp vector space V , where ρ is continuous. Here the topology on AutQp(V )
is that ofGLn(Qp), which is well defined, independently of the chosen basis.

A morphism of p-adic representations V1, V2 of Γ is a Γ-equivariant linear map f : V1 → V2,
i.e. a linear map that commutes with the action of Γ. Let’s denote, for any γ ∈ Γ, the morphism
ρi(γ) simply by γ,. Then a Γ-equivariant map is a map that satisfies γ(f(v)) = f(γ(v)) for all
v ∈ V1 and all γ ∈ Γ.

We denote the category of p-adic representations ofΓ, whose objects andmorphism have just
been described, by RepQp

(Γ).

Remark 7.2. In general the above definition is used for representations of Galois groups. In
particular GK is profinite and one studies p-adic representations of Γ = GK .

Definition 7.3: (F,Γ)-regular algebra.
Let F be a field and Γ a group. Let B be an integral F -algebra equipped with an action of Γ via
automorphisms ofF -algebras. Denote byC := Frac(B) and byE := BΓ. Notice that Γ acts on
C in a natural way. We say thatB is (F,Γ)-regular iff

1. BΓ = CΓ and

2. if b ∈ B generates a vector space F · b stable under the action of Γ, then b ∈ B×.

Remark 7.4. Notice that, for any (F,Γ)-regular algebraB,E/F is a field extension. Moreover
if B is already a field, than it is clearly (F,Γ)-regular. Finally we will always be concerned with
Γ = GK and F = Qp, so we will fix them and assume that B is a (Qp,GK)-regular algebra.
Moreover in the following we will simply write Γ-regular to mean (Qp,Γ)-regular.

Definition 7.5.
One can define the functor

DB : RepQp
(GK) Vect(E)

V DB(V ) :=
(
B ⊗Qp V

)GK
,

wherewe denoted byVect(E) the category ofE-vector spaces. Moreoverwe can define a natural
B-linear, GK-equivariant map given by multiplication inB

αB(V ) : B ⊗E DB(V ) B ⊗Qp V

b⊗ d bd.
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Proposition 7.6 ([BC09, Theorem 5.2.1]). Fix V ∈ RepQp
(GK). Then the map αB(V ) is always

injective and dimE DB(V ) ≤ dimE V . Moreover there is equality of dimensions iff αB(V ) is an
isomorphism.

Definition 7.7: Admissible representations.
We say that V ∈ RepQp

(GK) is a B-admissible representation iff dimE DB(V ) = dimE V . We
denote by RepBQp

(GK) ⊂ RepQp
(GK) the full subcategory ofB-admissible representations.

Proposition 7.8 ([BC09, Theorem 5.2.1]). Let’s denote by Vectf (E) the category of finite dimen-
sional E-vector spaces. Then, the functor

DB : RepBQp
(GK) Vectf (E)

V DB(V ) :=
(
B ⊗Qp V

)GK
,

is exact and faithful. Moreover any subrepresentation and quotient of a B-admissible representation is
B-admissible.

7.2 Period rings
Definition 7.9.
LetA be an Fp-algebra. We can associate to it the perfect Fp-algebra

R(A) := lim←−
x 7→xp

A =

{
x = (x0,x1, . . .) ∈

∏
n∈N

A

∣∣∣∣∣ xp
n+1 = xn for all n ∈ N

}
endowed with the product ring structure.

Remark 7.10.

1. The above Fp-algebra is perfect since the pth power map is clearly surjective by definition.
Moreover it is injective since any elementx = (xn) satisfyingxp = 0hasxn−1 = xp

n = 0
for all n ≥ 1.

2. We have a canonical morphism

R(A) A

(xn)n∈N x0.

Moreover any morphism from a perfect Fp-algebra toA factors through the above projec-
tion.

3. IfA is already perfect, thenR(A) ≃ A. In particular the inverse map of the above projec-
tion is given by a 7→

(
a1/p

n)
n
. In particular, let’s consider k a fixed separable closure of

k. Since k is already perfect, we obtainR(k) ≃ k.

4. GivenF a field of characteristic p, it can be shown thatR(F ) is the largest perfect subfield
of F .

Notation 7.11.
We introduce the following ring

R := R(OCK
/pOCK

) = R(OK/pOK).

It is a perfect Fp-algebra and also canonically an algebra over k, sinceOCK
/pOCK

is.
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Proposition 7.12 ([BC09, Proposition 4.3.1]). LetO be a p-adically separated and complete ring, and
a ◁ O an ideal ofO containing p and such that aN ⊂ pO for someN ∈ N (i.e. the a-adic and p-adic
topologies coincide). Then we have a map

R(O/a) lim←−x 7→xp
O

(xn)n∈N
(
x(n)

)
n∈N ,

where we define x(n) := limm→∞ x̂n+m
pm

, in which x̂m is any lift of xm to O. This map does not
depend on the choice of lift, it is bijective and its inverse is given by

lim←−n 7→xp
O R(O/a)(

x(n)
)
n∈N

(
x(n)mod a

)
n∈N .

MoreoverR(O/pO) ≃ R(O/a) and this common ring is a domain as soon asO is.

Remark 7.13. Above lim←−x 7→xp
Owas taken in Sets. Though we can endow lim←−x 7→xp

Owith the
ring structure given, for any x :=

(
x(n)

)
and y :=

(
y(n)

)
, by

(xy)
(n) := x(n)y(n) and (x+ y)

(n) := lim
m→∞

(
x(n+m) + y(n+m)

)pm

.

With this extra structure the above bijection is an isomorphism of rings.

Notation 7.14.
In view of the above isomorphism we might see an element x ∈ R either as an element (xn) ∈
lim←−φ

OCK
/pOCK

or as an element
(
x(n)

)
∈ lim←−x 7→xp

OCK
. We will use high and low indices

accordingly.

Remark 7.15. Let’s now notice that GK := Gal
(
K/K

)
acts naturally onOCK

, since it acts via
isometries onK . Moreover, since it acts via morphisms of rings, which commute with x 7→ xp,
its action can be naturally extended toR = lim←−x7→xp

OCK
.

Lemma 7.16 ([BC09, Lemma 4.3.3]). Denote by | · |p the absolute value onCK normalized by |p|p =
1/p. The map

| · |R : R pQ ∪ {0}(
x(n)

)
n∈N

∣∣x(0)
∣∣
p

is a GK-equivariant absolute value on R that makes R the valuation ring for the unique valuation
νR on FracR extending − logp | · |R on R and having value group Q. Moreover R is νR-adically
separated and complete and the subfield k ofR maps isomorphically onto the residue field ofR.

Example 7.17.

1. Fix
(
p1/p

n)
n∈N a compatible family of pnth roots of p in OCK

. Denote by p the element
ofR given by

p :=
(
p(n)

)
n∈N =

(
p, p1/p, p1/p

2

, . . .
)
∈ R.

Its valuation is easily computed by νR(p) = νp(p
(0)) = νp(p) = 1.
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2. Fix a compatible family of primitive pnth roots of unity (ζpn)n∈N in OCK
. We denote by

ε the special element ofR given by

ε :=
(
ε(n)

)
n∈N =

(
1, ζp, ζp2 , . . .

)
∈ R.

The elementεdepends on the chosen compatible family and any two suchε areZ×
p -powers

of each other. Moreover we have νR (ε− 1) = p/(p − 1). Let’s show this for p > 2: by
definition we have νR(ε− 1) = νp

(
(ε− 1)(0)

)
. By remark 7.13 we have

(ε− 1)
(0)

= lim
n→∞

(
ζpn + (−1)(n)

)pn

.

Let’s notice that (−1)(n) = −1 for all n and that ζpn − 1 is a root ofΦpn(1 +X), where
Φm denotes the mth cyclotomic polynomial. In particular Φpn(1 + X) is Eisenstein of
degree pn−1(p− 1). Then

νR(ε− 1) = lim
n→∞

pn

pn−1(p− 1)
=

p

p− 1
.

Finally we recall that GK acts on ζpn via the cyclotomic character, which is defined by
g(ζpn) = ζ

χ(g)
pn for any g ∈ GK . As a consequence, since the induced action is component-

wise, GK acts also on ε via the cyclotomic character, i.e. g(ε) = εχ(g) for all g ∈ GK .

Theorem 7.18 ([BC09, Theorem 4.3.5]). The field FracR = R[1/p] is algebraically closed.

Remark 7.19. There is a natural family of ring homomorphisms

θn : R OCK
/pOCK

(xm)m∈N xn.

Let’s recall the k-algebra structure ofR. It is given by the k-embedding

k = R(k) R(OK/pOK) = R

c
(
j(c), j(c1/p), j(c1/p

2

), . . .
)
,

where j : k → OK/(p) is the canonical section to the reduction map OK/(p) ↠ k. Then θ0
is a morphism of k-algebras. We wish to lift it to a ring mapW (R) → OCK

, but we cannot use
universal property of the Witt vectors construction since OCK

/(p) is not perfect (in particular
the Frobenius is not injective).

Definition 7.20.
We define, set theoretically, the map

θ : W (R) OCK∑
n∈N[cn]p

n
∑

n∈N c
(0)
n pn,

where remark 6.14 allows us to write any element ofW (R) in a unique Teichmüller expansion
and c(0)n is defined as in notation 7.14.
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Remark 7.21. In remark 6.14 we explicitly computed the Teichmüller expansion of (rn)n∈N to
be
∑

n∈N[r
p−n

n ]pn. Moreover, by compatibility of the elements in lim←−x 7→xp
OCK

and multiplic-

ativity of r 7→ r(n), we have that
(
rp

−n)(0)
=
(
(rp

−n

)(n)
)pn

= r(n). Hence we can also
compute θ via

θ : (r0, r1, . . .)
∑

n∈N r
(n)
n pn.

Remark 7.22. Let’s recall that in remark 7.15 we saw that the action of GK extends naturally
from OCK

to R. Then, thanks to proposition 6.15, this naturally induces an action of GK on
W (R). More explicitly the action of GK is defined, for all g ∈ GK , by

g

(∑
n∈N

[cn]p
n

)
=
∑
n∈N

[g(cn)]p
n.

Moreover, recalling the explicit description of the Teichmüller expansion given in remark 6.14,
we see that this action ofGK onW (R) correspondswith the component-wise action (again, since
it commutes with Frobenius onR).

Lemma 7.23 ([BC09, Lemma 4.4.1]). The map θ : W (R) ↠ OCK
is a surjective GK-equivariant

ring homomorphism.

Remark 7.24. Notice that θ is clearly GK-equivariant, since GK acts on OCK
via isometries

(hence via continuousmaps). Moreover, inverting p, we obtain anotherGK-equivariant surjective
ring homomorphism

θQ : W (R)[1/p] OCK
[1/p] = CK .

It is important to notice, though, that the source ring is not a complete valuation ring.

Proposition 7.25 ([BC09, Proposition 4.4.3]). Let p be as in example 7.17 and let

ξ := ξp = [p]− p ∈W (R).

1. The ideal ker θ ◁ W (R) is principal and it is generated by ξ.

2. An elementw = (w0,w1, . . .) ∈ ker θ generates the ideal if and only ifw1 ∈ R×.

Corollary 7.26 ([BC09, Corollary 4.4.5]). For all j ≥ 1 we haveW (R) ∩ (ker θQ)
j
= (ker θ)

j .
Moreover

⋂
j≥1 (ker θ)

j
=
⋂

j≥1 (ker θQ)
j
= 0.

Remark 7.27. As a consequence we see thatW (R)[1/p] injects into its ker θQ-completion

B+
dR := lim←−

j≥1

W (R)[1/p]

(ker θQ)
j
.

Since θQ is a GK-equivariant morphism, ker θQ is stable under the action of GK and the trans-
ition maps of the above projective limit are GK-equivariant. As a consequence B+

dR inherits a
natural action of GK which is compatible with that on its subringW (R)[1/p]. Then B+

dR pro-
jects GK-equivariantly on its quotients by (ker θQ)

j . In particular, for j = 1, we obtain a lift of
θ to a GK-equivariant surjection

θ+dR : B+
dR CK .

Finally we see that the action of the Frobenius onW (R)[1/p] does not naturally extend toB+
dR.

In fact ker θQ is not stable under its action, since φ(ξ) = [pp]− p /∈ ker θQ.
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By constructionB+
dR is a discrete valuation ring, so we want to find a uniformizer which behaves

well under the action of GK .

Definition 7.28.
Let ε be as in example 7.17. We define

t := log ([ε]) = log (1 + ([ε]− 1)) =

∞∑
n=1

(−1)n+1 ([ε]− 1)n

n
∈ B+

dR.

Remark 7.29 ([BC09, pp. 60–62]).

1. The element [ε]− 1 lies in ker θ, hence the element log([ε]) is well defined inB+
dR.

2. Recall that, as stated in example 7.17, for any two choices ε and ε′ there is an a ∈ Z×
p such

that ε′ = εa. Let’s denote by t′ := log([ε′]). Then it can be shown, via careful topological
arguments, that t′ = at.

3. GK acts multiplicatively on t via the cyclotomic character, i.e. for all g ∈ GK we have

g(t) = χ(g)t.

4. The element t is a uniformizer ofB+
dR.

Definition 7.30: Field of p-adic periods.
We define the field of p-adic periods, also called the de Rham period ring,

BdR := FracB+
dR = B+

dR[1/t].

Remark 7.31. Notice that, just likeB+
dR, the field of p-adic periodsBdR is endowed with a nat-

ural action of GK . Moreover we can notice that, set theoretically, the construction of BdR de-
pends only onCK and not onK , though the choice ofK changes, functorially, the Galois group
acting on it, up to restriction to a closed subgroup.

Proposition 7.32 ([BC09, Theorem 4.4.13 and example 5.1.3]). BdR is GK-regular (being a field)
andBGK

dR = K .

Definition 7.33.
We defineAcris to be the p-adic completion of the divided power envelope ofW (R)with respect
to the ideal ker θ. More explicitly

Acris = lim←−
n∈N
DW (R)(ker θ)/p

nDW (R)(ker θ).

Remark 7.34 ([BC09, §9.1]). The ringAcris is identified with a subring ofB+
dR, whose elements

are given by

Acris =

{∑
n∈N

an
ξn

n!

∣∣∣∣∣ an ∈W (R) s.t. lim
n→∞

an = 0 for the p-adic topology

}
.

In particular this grants that Acris is a domain, hence that it is a flat Zp-module. Moreover the
composite Acris ↪→ B+

dR ↠ CK lands in OCK
and induces a surjective ring homomorphism

Acris ↠ OCK
. Also, by [BC09, Proposition 9.1.3], we see that the important element t = log([ε])

is inAcris and that kerAcris ↠ OCK
is endowed with divided powers.
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Remark7.35. As seen in remark 7.22,GK acts onW (R) sending pW (R) to pW (R) and, thanks
to lemma 7.23, ker θ to ker θ. Then by universal property of divided powers envelope the action
extends toDW (R)(ker θ). More explicitly any g ∈ GK induces the unique dashed arrow

DW (R)(ker θ)

(W (R), ker θ) W (R) ⊂ DW (R)(ker θ).

(7.1)

This then extends toAcris. By [BC09, Proposition 9.1.2] the action of GK onAcris is continuous
for the p-adic topology. Also, following [BC09, Lemmas 9.1.7-9.1.8], we can extend the Frobenius
morphism φ onW (R) toAcris. In fact one can check on the generator ξ = [p]− p of ker θ that
φ onW (R) sends ker θ + (p) to ker θ + (p) and argue as in diagram (7.1) that the Frobenius
extends toDW (R)(ker θ) and then toAcris. In particular the above holds since

φ(ξ) = [pp]− p = [p]p − p = [p]p − pp︸ ︷︷ ︸
∈ker θ

+ pp − p︸ ︷︷ ︸
∈(p)

.

Moreover one can check that φ(t) = pt.

Remark 7.36. We can give toAcris the structure ofW -algebra and then also ofS-algebra, where
we recall thatW := W (k) and that S was defined in definition 6.32. The construction goes as
follows. We have the injections

W (R) DW (R)(ker θ) lim←−n∈NDW (R)(ker θ)/p
nDW (R)(ker θ) = Acris.

Since, moreover, k ↪→ Rwe obtain an injectionW ↪→W (R). Composed with the above it gives
a canonicalW -algebra structure toAcris. With this structurewe define theW -algebramorphism

α : W [u] Acris

u [π] ,

where π is defined, like p, as π :=
(
π, π1/p, π1/p2

, . . .
)
∈ lim←−OCK

= R for π a uniformizer
of K . Notice, moreover, that by definition of Frobenius on bothW [u] and Acris, the map α is
compatible with Frobenius. In fact the image of α lies inW (R) ⊂ Acris, hence we can check it
here, since Frobenius of Acris extends that ofW (R). Then, by definition we have the following
square (which clearly commutes)∑

n∈N anu
n

∑
n∈N an [π]

n

∑
n∈N F (an)u

np
∑

n∈N F (an) [π]
np
,

α

φ φ

α

where F denotes the Frobenius on Witt vectors. Recall that, as introduced in section 6.2, we
will denote by E(u) ∈ W [u] the minimal polynomial of π. Now we notice that α(E(u)) ∈
ker θ by definition of θ. In fact α(E(u)) = E([π]) and θ([π]) = π imply that θ(α(E(u))) =
E(π) = 0. Then, by universal property of divided powers envelope, the morphismW [u] →
DW (R)(ker θ) ⊂ Acris induces a morphismDW [u](E(u)) → DW (R)(ker θ). This induces the
following diagram

DW [u](E(u)) DW (R)(ker θ)

S Acris,
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where the dashed arrow exists by universal property of the completion of a ring with respect to
the p-adic topology.

Definition 7.37.
We denote byB+

cris the GK-stableW (R)[1/p] subalgebra

B+
cris := Acris[1/p] ⊂ B+

dR.

We define the crystalline period ring for K to be the GK-stableW (R)[1/p]-subalgebra of BdR

given byBcris := B+
cris[1/t].

Remark 7.38.

1. With some computations (see [BC09, Proposition 9.1.3]) one can show that tp−1 ∈ pAcris,
hence that inverting tmakes p a unit. ThenBcris = B+

cris[1/t] = Acris[1/t].

2. From the above we obtain that νp(t) ≥ 1/(p− 1). Then, since n!γn(t) = tn for all n, we
can give an estimate to the p-adic valuation of its divided powers. Indeed we obtain

νp(γn(t)) = νp(t
n)− νp(n!) ≥

n− (n− sp(n))
p− 1

=
sp(n)

p− 1
,

which implies that γn(t) p-adically go to 0.

3. As forBdR, set theoretically the definition ofB+
cris and ofBcris only depends onCK . Again

the choice ofK changes, functorially, the Galois group GK acting on the period rings.

Proposition 7.39 ([BC09, Proposition 9.1.6]). Bcris isGK-regular andBGK

cris = K0, where we recall
thatK0 denotes the maximal unramified subextension ofK/Qp.

Finally we give a characterization ofAcris via a universal property.

Definition 7.40: Formal divided power thickening.
LetA be a ring, with a principal ideal p equippedwith divided powers andV be anA-algebra. A p-
adic divided powerA-thickening ofV is a surjective homomorphism ofA-algebras θ : D → V such
that ker θ has a divided power structure compatible with those on p, similarly to definition 4.60.
Morphisms between divided powerA-thickenings are divided powermorphismsmaking the ob-
vious diagram commute. If the category of p-adic divided powerA-thickenings of V , whose ob-
jects and morphisms have just been defined, admits an initial object we call it the universal p-adic
divided powerA-thickening of V .

If, moreover,V is separated and completewith respect to the p-adic topologywe define formal
p-adic divided powerA-thickenings of V to be p-adic divided powerA-thickenings of V which are
separated and complete with respect to the p-adic topology. An initial object in the category of
formal p-adic divided powerA-thickenings of V is called universal as before.

Proposition 7.41 ([Fon94, §2.3.2]). Acris is a universal formal p-adic divided powerW -thickening
ofOCK

.

Proof. Thanks to remark 7.34 it is clear thatAcris is a formal p-adic divided powerW -thickening
ofOCK

. In fact ker(Acris → OCK
) is the p-adic completion of the P.D. ideal generated by ker θ

and p inDW (R)(ker θ). The latter is equipped with divided powers by construction, whereas the
former is equipped with divided powers by lemma 4.13. We then need to show universality. Let
(D, θD, γ) be another formalp-adic divided powerW -thickening ofOCK

. Giving amorphismof
formal p-adic divided powerW -thickening fromAcris toD is equivalent to giving a continuous
morphism

α : W (R) D
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between p-adic rings, such that θD ◦ α = θ|W (R). This is because universal property of divided
powers envelope allows to extend α uniquely to DW (R)(ker θ) and continuity to Acris. Let’s
denote JD := ker θD . We now need to notice that, given d1 ≡ d2 mod JD inD, then dp1 ≡ d

p
2

mod pJD . In fact, given d1 ≡ d2 mod JD there is λ ∈ JD such that d2 = d1 + λ. Then

dp2 = dp1 +

p−1∑
i=1

(
p

i

)
di1λ

p−i + λp.

Here we notice that
(
p
i

)
di1λ

p−i ∈ pJD for all 2 ≤ i ≤ p − 1 and that λp = p!γp(λ), since
JD is equipped with divided powers. All in all we have dp1 − dp2 ∈ pJD as we wished. Fix
now x ∈ R and take, for any m ∈ N, ξm ∈ D a lift via θD of x(m) ∈ OCK

, defined as in
notation 7.14. Then, from what we stated before, the sequence ξp

m

m converges p-adically to an
element ρ(x) ∈ D which does not depend on the chosen lift. To prove this let’s notice that, since
(x(m+1))p = x(m) in OCK

, we have ξpm+1 ≡ ξm mod JD . But, by what we just proved, this
implies that ξp

m+1

m+1 ≡ ξp
m

m mod pmJD , hence that the sequence
{
ξp

m

m

}
is p-adically Cauchy.

SinceD is p-adically complete this is enough to grant convergence. With regards to independence
from the chosen lift, fix another family {ζm} of lifts of x(m) inD. Then, by construction, ξm ≡
ζm mod JD for all m ∈ N, hence ξpm

m ≡ ζp
m

m mod pmJD by the above. This means that
the sequence

{
ξp

m

m − ζpm

m

}
is Cauchy, moreover it clearly converges to zero. Then, being D a

separated topological ring (hence sum is continuous), we obtain that the two sequences
{
ζp

m

m

}
and

{
ξp

m

m

}
converge to the same point, which is then independent from the choice of lifts. Let’s

now recall that
θ([x]) = x(0) = lim

n→∞
x̂n

pn

.

We want to construct a family of lifts ξn such that ξn → α([x]), in order to show that α([x]) =
ρ(x). We denote by yn := x̂n

pn

∈ OCK
and by

yn :=
(
yn, y

1/p
n , y1/p

2

n , . . .
)
∈ lim←−

x 7→xp

OCK
≃ R.

Then θ([yn]) = x̂n
pn

by definition of θ. Moreover it is clear that yn → x in R, hence that
[yn] → [x], if we endowW (R) with the weak topology. The first statement is true since, by
definition of the element x(0) (and independence of the chosen lift in its definition), we have
yn → x(0). Then an easy induction argument shows that y1/p

m

n → x(m), hence that we have
convergence in R ≃ lim←−x 7→xp

OCK
(notice that we can uniformly bound the distance of each

component from its limit). By continuity of α, then, we get that

α([x]) = α
(
lim
n→∞

[yn]
)
= lim

n→∞
α([yn]) = ρ(x),

where the last equality holds by compatibility of α with θ, which implies that α([yn]) is a lift of
x̂n

pn

. Then, since α is a continuous morphism of p-adic rings, it acts on the general element of
W (R) by

α : (x1,x2, . . .) =
∑

n∈N[x
p−n

n ]pn
∑

n ρ(x
p−n

n )pn.

This proves uniqueness, but it is also an explicit description ofα. As a consequence also existence
is clear, since the above α is a continuous homomorphism which commutes with the morphisms
θ. ■
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7.3 Comparison morphisms
This last section will be dedicated to constructing and studying a few properties of our desired
comparison morphism and some related ones.

Remark 7.42. Consider G ∈ BT/OK , seen as the inductive limit of Gv , as in definition 3.40.
Let’s notice that, in proposition 3.70 we could have carried out the proof inOCK

instead ofOK .
This follows from remark 3.67, in which we saw thatGv(K) = Gv(OCK

). Then we have

Tp(G) ≃ HomBT/OCK

(
Qp/Zp, GOCK

)
.

Remark 7.43. Lemma 4.13 states that Acris ↠ OCK
is a divided power thickening. We will

then need to compute, for all G ∈ BT/OK , the evaluation D∗(GOCK
)(Acris). Having already

computed it, we wish to reduce its computation to that of D∗(G)(S), where we recalled that S
was defined in definition 6.32. Indeed, as seen in remark 7.36, the S-algebra structure ofAcris is
a divided power morphism which makes the following diagram commute

OK S

OCK
Acris.

Then, calling f := Spec(OK → OCK
), we can invoke remark 6.22 and obtain that

D∗(GOCK
)(Acris) ≃ f∗D∗(G)(S) = Acris ⊗S D∗(G)(S).

Remark 7.44. From remark 7.42 we see that any f ∈ Tp(G) can be interpreted as a morphism
of Barsotti-Tate groups on OCK

between Qp/Zp (base changed to OCK
) and GOCK

. Since D∗

acts contravariantly on Barsotti-Tate groups and covariantly on rings, it associates to f the map

D∗(f)(Acris) : D∗(GOCK
)(Acris) D∗(Qp/Zp)(Acris).

We use remark 7.43 to reduce these evaluations to the modulesM(G) = D∗(G)(S) of proposi-
tion 6.38. In particular, from example 6.39, we getD∗(Qp/Zp)(S) = S dT

T . Then we have

D∗(Qp/Zp)(Acris) ≃ Acris and D∗(GOCK
)(Acris) ≃ Acris ⊗S D∗(G)(S).

Recalling thatAcris has an Zp-algebra structure we obtain a pairing

Tp(G)× D∗(GOCK
)(Acris) Acris

(f, a) D∗(f)(Acris)(a).

But this allows to associate to each a ∈ D∗(GOCK
)(Acris) the evaluation morphism

ρa : Tp(G) Acris

f D∗(f)(Acris)(a).

Since D∗ is an additive functor this morphism is Z-linear, moreover it can be shown to be Zp-
linear too. As stated in remark 3.69, Tp(G) is a free Zp-module of finite rank. As a consequence
we have a canonical isomorphism

HomZp-Mod (Tp(G),Zp)⊗Zp
Acris HomZp-Mod (Tp(G), Acris) .

∼

All in all, the above allows us to define the following homomorphism

ρG : Acris ⊗S D∗(G)(S) Acris ⊗Zp
Tp(G)

∨.
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Definition 7.45.
Fix
{
π1/pn}

, a compatible family of roots of the uniformizerπ ofK . By compatiblewemean that
(π1/pn

)p = π1/pn−1

for all n ∈ N. We define the algebraic extensionK∞/K as the extension
given by K∞ :=

⋃
n∈NK(π1/pn

). As usual we will denote by GK∞ := Gal
(
K/K∞

)
the

absolute Galois group ofK∞.

Theorem 7.46 ([Fal99, §6, theorem 7]). The morphism constructed in remark 7.44

ρG : Acris ⊗S D∗(G)(S) Acris ⊗Zp
Tp(G)

∨

is a functorial GK∞-equivariant injection which respects Frobenius and filtrations. Moreover the coker-
nel of ρG is annihilated by t.

Proof. The idea of the proof, as carried out in [Fal99, §6], is to first concentrate on the particular
case of G = Gm(p) and then to reduce, using functoriality of ρG, the general case to this one.
Here, though, we will not be concerned with filtrations nor with Frobenius.

Let’s start by tackling functoriality and GK∞-equivariance. Both of them can be explicitly
checked in the construction of remark 7.44. In fact each step is clearly functorial and, upon in-
specting the various actions at each step, it turns out that each is also GK∞-equivariant.

Let’s now concentrate on the particular case, so let’s fix G = Gm(p). We need to explicitly
compute the morphism ρG, using Messing’s theory, in order to prove that t kills coker ρG. To
achieve this result, let’s recall that, sinceOK is an admissible ring with ideal of definition (p), we
can invoke lemma 3.56 and consider a Barsotti-Tate group G ∈ BT/OK as a family {Gn}n∈N
of Barsotti-Tate groups such thatGn ∈ BT/(OK/p

nOK). Since this equivalence is compatible
with extensions it will allow us to construct universal extensions and morphisms between them
using Messing’s theory. Indeed in the following, when invoking results from section 5.2, we will
implicitly carry out the computations on the variousGns. Since the construction of the univer-
sal extension commutes with base change, by lemma 5.17, we obtain a compatible system as in
lemma 3.56, hence a universal extension for our starting groups. Moreover the same applies to
morphisms between extensions by corollary 5.31.

It’s now time to start with the explicit computations. Recall that Tp(G) = Zp(1), hence that
Tp(G)

∨ = Zp(−1). Now, since GK acts on t ∈ Acris via the cyclotomic character, we have an
isomorphism of GK-modules Zp(−1) ≃ Zpt

−1. Let’s recall that we denoted t = log([ε]) ∈
Acris. Moreover, as defined in example 7.17, we will use the notation ε(n) to denote our fixed
pnth root of unity ζpn ∈ OCK

. Then t ∈ Tp(G) corresponds, as shown in proposition 3.70, to
a morphism of Barsotti-Tate groupsQp/Zp → Gm(p). In particular, when evaluated atOCK

, it
gives rise to

u0 : Qp/Zp Gm(p)(OCK
)

1
pn ε(n),

where µp∞(OCK
) = Gm(p)(OCK

) is the multiplicative group of all p-power roots of unity in
OCK

. Starting from the construction of proposition 5.14 one can compute the universal extension
ofG andGD . Recalling the computations of example 6.39 we obtain the universal extension

0 Ga (Ga ⊕Qp)/Zp Qp/Zp 0

forQp/Zp, where the quotient is given by the pushout ofGa andQp over their common subgroup
Zp, and

1 1 Gm(p) Gm(p) 1

85



forGm(p). For this last recall thatQp/Zp, the dual ofGm(p), is étale, henceωGD = 0. Consider-
ing t as a morphism of Barsotti-Tate groups, proposition 5.19 grants the existence of a morphism
of extensions which, when evaluated atOCK

, gives rise to the following commutative diagram

OCK

OCK⊕Qp

Zp
Qp/Zp

1 µp∞(OCK
) µp∞(OCK

).

0 v0 u0

Here it is clear that the map v0, making the diagram commute, is defined by

v0 : (λ, x) u0(x).

Henceforth we will denote by εx := u0(x), for x ∈ Qp/Zp and ε our fixed system of compatible
pnth roots of unity. In particular, if we write x = a/pm, for a ∈ Zp and −m = νp(x), we
can explicitly compute εx :=

(
ε(m)

)a. Let’s recall that, as seen in remark 7.34, we have a sur-
jective homomorphismAcris ↠ OCK

whose kernel is endowed with divided powers. Then the-
orem 5.26, thanks to the fact that alsoAcris is p-adically complete, grants that v0 can be uniquely
lifted to a morphism

v : (Acris ⊕Qp)/Zp A×
cris

such that −v|V(Qp/Zp
Acris

) is an exponential (notice that, following the notation of theorem 5.26,

i = 0 in our case). Moreover we can define a morphism

ṽ : (Acris ⊕Qp)/Zp A×
cris

(a, x) exp(−at) · [α(x)],

where, writing as before x = a/pm with−m = νp(x),

α(x) :=
(
(ε(m+n))a

)
n∈N ∈ R = lim←−OCK

.

Here it is important to notice that Acris is complete with respect to the p-adic topology which,
thanks to item 2 of remark 7.38, implies that the above map is well defined. Moreover, since
t ∈ ker θ, ideal with divided powers, we obtain that exp(−at) ∈ 1 + ker θ. As a consequence
we obtain that θ(ṽ(a, x)) = εx, i.e. that ṽ lifts v0. Moreover, restricting v to V(Qp/Zp

Acris

) is
the same as computing it at x = 0, which is an exponential. By uniqueness this grants that v = ṽ.
Then we have explicitly computed E(u0) := E(t) = ṽ. Now, taking Lie of all that, we get (what
else could it be)

D∗(t)(Acris)(a) = log (exp(−at)) = −at

for all a ∈ Acris. And this is exactly the required explicit construction of ρG. In fact, looking at
the construction of remark 7.44, we see that the morphism ρG acts as

ρG : Acris ⊗S D∗(G)(S) HomZp
(Tp(G), Acris)

a⊗ b (f 7→ D∗(f)(Acris)(a⊗ b)) .

Moreover, in our case,Tp(G)∨ ≃ Zp ·t−1, where the isomorphism sendsx 7→ x(t)·t−1, where t
is the generator ofTp(G). Finally we recall that, as computed in example 6.39,D∗(Gm(p))(S) ≃

86



S dT
T . Putting it all together, the morphism ρG acts by

ρG : Acris ⊗S S
dT
T Acris ⊗Zp

Zpt
−1

a⊗ dT
T −a · t⊗ t−1.

Here we clearly see that t kills coker ρG, since im ρG = t · (Acris ⊗Zp
Zpt

−1).
Let’s now switch to the general case, in which G ∈ BT/OK is arbitrary. We want to ex-

plicitly construct morphisms GOK
→ Gm(p) which will allow us to reduce the study of ρG to

the above case. To achieve this goal we recall that Tp(G)∨ = Tp(G
D)(−1) = Tp(G

D)t−1.
Hence, given any y ∈ Tp(G)∨, we obtain ty ∈ Tp(GD), which can be interpreted as a map in
HomBT/OK

(
Qp/Zp, G

D
OK

)
. By theorem 2.42 this gives a morphism

(ty)
D

: GOK
Gm(p)OK

Now, by functoriality of the comparison morphism ρG, we obtain the commutative diagram

Acris ⊗S D∗(G)(S) Acris ⊗Zp (Tp(G))
∨

Acris ⊗S S
dT
T Acris ⊗Zp

Zpt
−1,

ρG

ρGm(p)

D∗((ty)D)(Acris) idAcris
⊗Tp((ty)

D)∨

where we recall that both D∗ and Tp(G)∨ act contravariantly on morphisms. Now we need to
determine the morphism Tp((ty)

D)∨. To do so let’s notice that

Tp((ty)
D)∨(1) = Tp(ty) : Tp

(
Qp/Zp

)
Tp(G

D)

1 = (1/pv)v∈N ty.

Here, as computed before, we have Tp(Qp/Zp) = Zp and Tp(GD) = Tp(G)
∨t. Combined with

the above this determines the morphism

Tp((ty)
D)∨ : t−1 y.

Then, in the above square, we see that

D∗((ty)D)(Acris)(1) −t⊗ y

1⊗ dT
T −t⊗ t−1.

ρG

D∗((ty)D)(Acris)

ρGm(p)

idAcris
⊗Tp((ty)

D)∨

Now, since we imposed no restriction on the choice of y ∈ Tp(G)∨, commutativity of the square
tells us that t ·

(
Acris ⊗Zp

(Tp(G))
∨) ⊂ im ρG, i.e. that t kills coker ρG.

We are finally left to prove injectivity. Notice that, thanks to classical Dieudonné theory,
D∗(G)(S) is a free S-module of rank h. Then, inverting t in Acris, i.e. extending scalars to
Bcris, we obtain a surjective map

Bcris ⊗S D∗(G)(S) Bcris ⊗S Tp(G)
∨
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between finitely generated freeBcris-modules. But then, applying Cayley-Hamilton, we see that
this is an isomorphism, so in particular it is injective. Now, sinceD∗(G)(S) and Tp(G)∨ are free
modules, they are also flat, hence the inclusionAcris ↪→ Bcris induces the inclusions

Acris ⊗S D∗(G)(S) Bcris ⊗S D∗(G)(S)

and
Acris ⊗S Tp(G)

∨ Bcris ⊗S Tp(G)
∨.

This allows us to see ρG as the restriction of an isomorphism to a subspace, which grants its
injectivity. And we win. ■

Remark 7.47. Notice that it is important to consider only the action of GK∞ . In fact, the S-
module structure ofAcris is induced by the map u 7→ [π] fromW [u] toW (R). Then an action
on the tensor productAcris⊗S D∗(G)(S) has to be compatible with this S-module structure. In
particular, sinceW ⊂ K , it has to fix the element [π], which is not the case for GK .

Localizing at t, i.e. base changing toBcris, the above result gives rise to the desired isomorphism.

Theorem 7.48. The base change toBcris of the morphism constructed in remark 7.44

Bcris ⊗S D∗(G)(S) Bcris ⊗Zp Tp(G)
∨∼

is a GK∞-equivariant isomorphism compatible with filtrations and Frobenius.

Remark 7.49. This result actually extends previously known results in the context of classical
Dieudonné theory. In fact, given G ∈ BT/OK , let’s denote by Gk its base change to k =
OK/mK the residue field of OK . Then, denoted by D∗(Gk) the Dieudonné module associated
toGk , we have the isomorphism of modules

D∗(G)(S) ≃ S ⊗W D∗(Gk).

Though here we don’t have a natural filtration. As a consequence it will not be of concern when
looking at the classical comparison morphism.

Theorem 7.50. Let G ∈ BT/OK and Gk be as above. Then we have a functorial GK-equivariant
injection

ρG : Acris ⊗W D∗(Gk) Acris ⊗Zp
(Tp(G))

∨

which is also compatible with Frobenius. Inverting twe obtain a functorial GK-equivariant isomorphism

ρ : Bcris ⊗W D∗(Gk) Bcris ⊗Zp
(Tp(G))

∨∼

which again is compatible with Frobenius.

Remark 7.51. Classically, in fact, in order to recover a natural filtration on D∗(Gk), one needs
to base change toBdR. In fact one can defineDK := OK ⊗W D∗(Gk). Then

DK = D∗(G)(S)/
(
Fil1 S ⊗W D∗(Gk)

)
,

hence it inherits a filtration from that onD∗(G)(S), via

Fil1DK := Fil1 D∗(G)(S)/
(
Fil1 S ⊗W D∗(Gk)

)
,
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where Fil1 D∗(G)(S) is defined as in lemma 6.24. And now this induces the usual filtration on
the scalar extensionBdR ⊗W DK , via

Fili (BdR ⊗W DK) =
∑
j∈Z

im
(
Fili−j BdR ⊗W Filj DK

)
= Fili−1BdR ⊗W Fil1DK + FiliBdR ⊗W DK ,

since the (decreasing) filtration on DK satisfies Fil0DK = DK and Fil2DK = 0. Moreover
one defines

Fili
(
BdR ⊗Zp Tp(G)

)
:= FiliBdR ⊗Zp Tp(G).

With all this in mind one can prove that the base change of the above isomorphism ρ toBdR, i.e.

idBdR
⊗ρ : BdR ⊗W D BdR ⊗Zp

Tp(G)

is an isomorphism compatible with the filtrations we have just defined.
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