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1 Preliminaries
Here a couple of preliminariy definitions, before we move on to categories.

Definition 1.1: R-module.
A leftR-module (M,+, ·) is an abelian group (M,+) on which is defined a map

· : R×M →M (1.1)
(r,m) 7→ rm. (1.2)

It is called scalar multiplication and satisfies

1. for any r ∈ R the induced map

ṙ : M →M (1.3)
m 7→ rm (1.4)

is a homomorphism of abelian groups.

2. The map that sends each r ∈ R to its associated endomorphism (as in the above)

ϕ : R→ EndZ (M) (1.5)
r 7→ ṙ (1.6)

is a morphism of rings.

If ϕ, instead of being a homomorphism is an antihomomorphism (i.e. it is a homomorphism

ϕ : Rop → EndZ (M) , (1.7)

from the opposite ring, in which the operations are computed in the opposite direction), thenM
is a rightR-module. We denote leftR-modules as RM , wheareas rightR-modules asMR.

Definition 1.2: Bimodule.
LetR,S be rings. An abelian group (M,+) is anR,S-bimoduleRMS iffRM is a leftR-module,
MS is a rightR-module and

r(xs) = (rx)s (1.8)
for any r ∈ R, s ∈ S, x ∈M .

Definition 1.3: Tensor product of modules.
Let S be a ring,MS ∈ Mod-S and SN ∈ S-Mod. A map β : M × N → G, to G an abelian
group, is called balanced iff it satisfies the following

β(m+m′, n) = β(m,n) + β(m′, n) ∀m,m′ ∈M and ∀n ∈ N (1.9)
β(m,n+ n′) = β(m,n) + β(m,n′) ∀m ∈M and ∀n, n′ ∈ N (1.10)

β(ms, n) = β(m, sn) ∀m ∈M, ∀n ∈ N and ∀ s ∈ S. (1.11)

The tensor product ofM andN is the pair (M ⊗S N, τ), withM ⊗S N an abelian group and
τ : M ×N →M ⊗S N a map s.t. ∀β : M ×N → G a balanced map, ∃ !α : M ⊗S N → G
an abelian group morphism s.t. the following diagram commutes

M ×N M ⊗S N

G

τ

β
α

, (1.12)
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i.e. s.t. α◦τ = β. In such a case we say that every balancedmapβ factors through τ via an abelian
group morphism.

Remark 1.4: Construction of the tensor product.
ConsiderM andN as before. ConsiderM × N as a set. Let ZM×N be the free abelian group
with basis (m,n) ∈M ×N . ConsiderH ◁ ZM×N generated by the elements of the form{

(m+m′, n)− (m,n)− (m′, n) , (m,n+ n′)− (m,n)− (m,n′) , (1.13)
(ms, n)− (m, sn)

∣∣m,m′ ∈M, n, n′ ∈ N, s ∈ S
}
. (1.14)

Let τ : M ×N → ZM×N/H , defined by (m,n) τ7−→ (m,n) +H , then
(
ZM×N , τ

)
is a tensor

product ofM andN .

Remark 1.5: Tensor product as a module.
GivenNS ∈ Mod-S and SMR and S-R bimodule, we want to construct a tensor product of the
two, which is also a right R-module. (We can choose S = EndR (M), or S = Z for example).
We define, for any LR ∈ Mod-R, the set

β ∈ Bal(N ×M,LR), (1.15)

consisting of β balanced maps (as defined above) s.t. β(x, yr) = β(x, y)r for all x ∈ N , y ∈M
and r ∈ R. Then, in this situation, we define the tensor productN ⊗SM as the rightR-module,
with a map τ , s.t. the following diagram commutes

N ×M N ⊗S M

LR

τ

β
∃α

(1.16)

for all LR, and β ∈ Bal(N ×M,LR). In particular this gives a bijection

Bal(N ×M,LR) HomR (N ⊗S M,LR)
φ

. (1.17)

2 Category theory

2.1 Categories and morphisms
Definition 2.1: Category.
A category C si determined by the following elements:

• Ob(C) a class of objects,

• ∀X,Y ∈ Ob(C) the data of a set of arrows with source X and target Y , denoted with
HomC (X,Y ), whose elements are called morphisms,

• an operation of composition, that acts as follows

◦ : HomC (X,Y )×HomC (Y,Z)→ HomC (X,Z) (2.1)
(f, g) 7→ g ◦ f, (2.2)

for anyX,Y, Z ∈ Ob(C) and is associative, i.e.

h ◦ (g ◦ f) = (h ◦ g) ◦ f, (2.3)

whenever defined, i.e. ∀X f−→ Y
g−→ Z

h−→W .
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Also the setEndC (X) := HomC (X,X) always contains the element idX , that is defined to act
as: given any f ∈ HomC (X,Y ), g ∈ HomC (Z,X)

f ◦ idX = f, idX ◦ g = g. (2.4)

Example

• Sets: Ob (Sets) are sets, and morphisms are set theoretic maps,

• Top: Ob (Top) are topological spaces, morphisms are continuous maps,

• Semigroups: Ob (Semigrousp) are sets with an associative operation, morphisms are ho-
momorphisms of semigroups,

• Monoids: Ob (Monoids) are semigroups with a unit, morphisms are monoid morphisms,

• Clearly one can construct a lot more examples, we’ll stop here.

Definition 2.2: Opposite category.
Given a category C, one can define the opposite category Cop, characterized by

• Ob(Cop) := Ob(C),

• HomCop (X,Y ) := HomC (Y,X), with composition given by

gop ◦Cop fop := (f ◦C g)op . (2.5)

Definition 2.3: iso-mono-epi morphisms.
LetX f−→ Y be a morphism in a category C, then it is a(n)

monomorphism: iff ∀Z
g1
⇒
g2

X s.t. f ◦ g1 = f ◦ g2 =⇒ g1 = g2. We denote it with

f : Y ↣ Z . It is said that f is left erasable

epimorphism: iff ∀X
h1
⇒
h2

Y s.t. h1 ◦ f = h2 ◦ f =⇒ h1 = h2. We denote it with

f : Y ↠ Z . It is said that f is right erasable

isomorphism: iff ∃Y g−→ X s.t. g ◦ f = idX and f ◦ g = idY .

Remark 2.4 Note that ifX f−→ Y is an iso, then it is also mono and epi, but the converse is not
always true.

If, moreover, X f−→ Y is an iso, we say that X and Y are isomorphic and we denote it with
X ≃C Y (especially if we do not want to explicitly cite the isomorphism).

Definition 2.5: Subcategory.
A category C′ is a subcategory of C, denoted with C′ ⊂ C iff

• Ob(C′) ⊂ Ob(C)

• ∀X,Y ∈ Ob(C′), we haveHomC′ (X,Y ) ⊂ HomC (X,Y ),

and the two categories have the same composition and identities.
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Definition 2.6: Full subcategory.
C′ ⊂ C is said to be a full subcategory iff ∀X,Y ∈ Ob(C′)

HomC′ (X,Y ) = HomC (X,Y ) . (2.6)

Definition 2.7: Discrete/finite/grupoid.
A category C is said to be

Discrete: iff the onlymorphisms are the identities. Note that a set can be naturally iden-
tified as a discrete category.

Finite: iff the familyMor(C) of all the morphisms in C (and, as a consequenceOb(C))
is a finite set.

Grupoid: iff all themorphisms are isomoprhisms. Note that a groupG can be identified
with a grupoid category C with only one elementX ∈ ObC and

HomC (X,X) := G. (2.7)

Definition 2.8: Product category.
Let C andD be two categories, one can define their product C×D as the category characterized
by

• Ob (C× D) := Ob (C)×Ob (D),

• HomC×D ((X,Y ), (X ′, Y ′)) := HomC (X,Y )×HomD (X ′, Y ′),

• (f, g) ◦C×D (f ′, g′) := (f ◦C g, f ′ ◦D g′).

Definition 2.9: Initial/terminal/zero object.
An objectX ∈ Ob (C) is said to be

Initial: iff ∀Y ∈ Ob (C) we haveHomC (X,Y ) = {pt},

Terminal: iff ∀Y ∈ Ob (C) we haveHomC (Y,X) = {pt},

Zero: iff it is both an initial and terminal object.

In the above list we have denoted with {pt} the singleton, i.e. any set with only one element.

Definition 2.10: Zero morphism.
Let C be category with a zero object 0C. GivenX,Y ∈ Ob (C) we can define the 0-morphism
fromX into Y as the unique map

X
α−→ 0C

β−→ Y. (2.8)

2.2 Functors
Definition 2.11: Functor.
Given two categories C andD, a functor F between them is defined by:

• a map F : Ob (C)→ Ob (D),

• a collection of maps, also denoted by F , given ∀X,Y ∈ Ob (C)

F : HomC (X,Y )→ HomD (FX,FY ) , (2.9)

s.t. F (idX) = idY and ∀ f, g these maps preserve composition, i.e.

F (g ◦C f) = F (g) ◦D F (f). (2.10)
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Definition 2.12: Full/faithful/essentially surjective/conservative functors.
Let C F−→ D be a functor, then it is said to be

Full iff ∀X,Y ∈ Ob (C) the mapHomC (X,Y )
F−→ HomD (FX,FY ) is surjective,

Faithful iff ∀X,Y ∈ Ob (C) the mapHomC (X,Y )
F−→ HomD (FX,FY ) is inject-

ive,

Fully faithful iff ∀X,Y ∈ Ob (C) the map HomC (X,Y )
F−→ HomD (FX,FY ) is

bijective,

Essentially surjective iff ∀Y ∈ Ob (D) ∃X ∈ Ob (C) s.t. FX ≃D Y ,

Conservative iffX f−→ Y is an isomorphism in C as soon as F (f) is an isomorphism
inD.

Remark 2.13 A fully faithful functor F : C→ D is conservative.

Definition 2.14: Concrete category.
A category C is called concrete iff it is equipped with a faithful functor to Sets.

Definition 2.15: Contravariant functor.
We define a contravariant functor from C to C′ to be a functor from Cop to C′, i.e. it satisfies

F (g ◦ f) = F (f) ◦ F (g). (2.11)

We denote with op: C→ Cop to be the contravariant functor associated with idCop . Sometimes
functors are called covariant in order to emphasize the fact that they are not contravariant.

Remark 2.16 Notice that, given F : C→ D andG : D→ E functors, then

• if both F andG are either covariant or contravariant, then F ◦G is covariant,

• if one of them is covariant and the other is contravariant, then F ◦G is contravariant.

Definition 2.17: Bifunctor.
A bifunctor F from (C,D) to E is a functor from the product category, i.e.

F : C× D→ E. (2.12)

In particular, fixed X ∈ C and Y ∈ D, then F (X,−) : D → E and F (−, Y ) : C → E
are functors. Moreover, for any morphism f : X → X ′ in C and g : Y → Y ′ in D, then the
following diagram commutes:

F (X,Y ) F (X,Y ′)

F (X ′, Y ) F (X ′, Y ′)

F (X,g)

F (f,Y ) F (f,Y ′)

F (X′,g)

. (2.13)

Example Given a category C, there is a natural bifunctor

F = HomC (−,−) : Cop × C→ Sets. (2.14)
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It is defined as follows. On objects it acts as

F : Cop × C→ Sets (2.15)
(C,D) 7→ HomC (C,D) . (2.16)

On pairs of morphismsC ′ f−→ C andD g−→ D′, it acts as

(C,D) HomC (C,D) α

(C ′, D′) HomC (C
′, D′) g ◦ α ◦ f

(f,g) F (f,g) . (2.17)

Clearly F is covariant in both variables.

Definition 2.18: Morphism of functors.
Given two functorsF,G : C→ D, amorphism of functors (sometimes called natural transformation)
θ : F → G (sometimes denotedwithF θ

=⇒ G) is the data, for anyX ∈ C, of amap θ(X) : FX →
GX s.t. ∀ f : X → X ′ in C the following diagram commutes

FX GX

FX ′ GX ′

θ(X)

F (f) G(f)

θ(X′)

, (2.18)

i.e. G(f) ◦ θ(X) = θ(X ′) ◦ F (f).
Some authors denote one such transformation with the following diagram

C B (2.19)

Definition 2.19: Natural isomorphic functors.
Let C and D be two categories, and G,F : C → D be two functors. We say that F is naturally
isomorphic toG iff one of the following (equivalent) conditions is satisfied:

• there exist two natural transformations η : F → G and θ : G→ F s.t.

idG = η ◦ θ and θ ◦ η = idF , (2.20)

• there exists a natural transformation η : F → G s.t. ηX : FX → GX is an isomorphism
inD for everyC ∈ Ob (C).

Definition 2.20: Category of functors.
We denote byDC := Fct (C,D) the category of functors fromC toD, whose elements are functors
F : C→ D and whose morphisms are the above mentioned morphisms of functors.

Remark 2.21 In general the category of functors is a large category, in the sense that its objects
might not be sets. Though, if we start from a small category, i.e. ifOb (C) is a set, then Fct (C,D)
is a small category.

In such case, fixed F,G functors from C toD, then a natural transformation is

η = {ηX}X∈Ob(C) ∈
∏

X∈Ob(C)

HomD (FX,GX) . (2.21)

7



It is important to notice that the infinite product of sets is still a set, hence

Nat (F,G) ⊂
∏

X∈Ob(C)

HomC (FX,GX) . (2.22)

Example Fix I := (I,≤) a poset (a small category) and a categoryC. An elementF ∈ Fct (I,C) =
CI is a functor

F : I→ C (2.23)

that associates to each element i ∈ I an object F (i) ∈ Ob (C). Moreover, with regards to
morphisms it acts as follows: given i ≤ j ≤ k we have i α−→ j

β−→ k and β ◦ α = γ : i→ k and
the following commutative diagram

F (i) F (k)

F (j)

F (γ)

F (α) F (β)
. (2.24)

In particular, given C = Mod (R), then F ∈ Fct (I,Mod (R)) is a functor s.t., called fji :=
F (i→ j), then

fki = fkj ◦ fji. (2.25)

This is called a direct system of modules.

Definition 2.22: Preadditive category.
A categoryC is called preadditive iff it is aZ category, i.e. iff given any pairX,Y ∈ Ob (C) the set
HomC (X,Y ) is a Z-module (an abelian group) and the composition of morphisms is a bilinear
map.

Example R-Mod, the category of leftR-modules, andMod-R, the category of rightR-modules,
are all preadditive categories (even forR division rings or fields).
Rings and Groups are not preadditive: the Hom sets do not have the structure of abelian group.

Definition 2.23: Additive functors.
Given two preadditive categores C and D, a functor F : C → D is called additive iff, for any
X,Y ∈ Ob (C), for any f, g : X → Y , then

F (f + g) = F (f) + F (g). (2.26)

Remark 2.24 For a samll preadditive category C and a preadditive categoryD, then we denote
with

Hom (C,D) (2.27)

the category of all additive functors from C toD.

Example Given a ringR, we define the category R with one object, ∗, characterized by

HomR (∗, ∗) := R, (2.28)

with the composition acting as the product inR. Clearly it is a preadditive category. Let’s consider
the category

Hom (R,Ab). (2.29)
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Definition 2.25: Category of C-modules.
Given a small preadditive category C, then the category

Hom (C,Ab) (2.30)

of additive covariant (contravariant) functors, is called the category of left (right) C-modules.

Definition 2.26: Category isomorphism/equivalence.
Given two categories C andD we say they are

isomorphic , notation C ∼= D, iff there exist F : C → D andG : D → C s.t. F ◦G =
idD andG ◦ F = idC,

equivalent , notationC ≃ D, iff there existF : C→ D andG : D→ C s.t. F ◦G ≃ idD
andG ◦ F ≃ idC. In this case we just asked for isomorphism of functors, which makes
F andG quasi-inverses.

Moreover an equivalence F : C→ Dop is called a duality.

Remark 2.27 Fixed a ringR, then

Hom (R,Ab) ∼= R-Mod and Hom (Rop,Ab) ∼= Mod-R. (2.31)

Example: duality. LetK be a division ring andK-Vect the category of finite dimensionale left
K-Vector Spaces, then

D : K-Vect→ Vect-K (2.32)
V 7→ V ∗ (2.33)

is a duality.

Proposition 2.28. A functor F : C → D is an equivalence of categories iff it is fully faithful and
essentially surjective.

2.3 Yoneda lemma
Definition 2.29 Let C be a category, one defines the following:

C∧ := Fct (Cop,Sets) , C∨ := Fct (Cop,Setsop) , (2.34)

and the functors

hC : C→ C∧ s.t.X 7→ HomC (−, X) (2.35)
kC : C→ C∨ s.t.X 7→ HomC (X,−) . (2.36)

Lemma 2.30 (Yoneda). The functor hC is fully faithful.

Definition 2.31: Representable functor.

1. A functorF : Cop → Sets is representable iff there existsX ∈ C s.t. F (Y ) ≃ HomC (Y,X)
functorially in Y ∈ C. In other words we have F ≃ hC(X) in C∧. Such objectX is called
a representative of F .

2. A functor G : C → Sets is corepresentable iff there exists a representative X ∈ C s.t.
G(Y ) ≃ HomC (X,Y ) functorially in Y ∈ C.
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Proposition 2.32. Let F : Cop → Sets be a representable functor, i.e. ∃X ∈ Ob (C) s.t.

F ≃ HomC (−, X) . (2.37)

ThenX is unique up to isomorphism.

Definition 2.33: Adjoint functors.
Let F : C→ D andG : D→ C be two functors. One says that (F,G) is an adjoint pair, or equi-
valently thatF is a left adjoint toG or thatG is a right adjoint toF , iff there exists an isomorphism
of bifunctors:

HomD (F (−),−) ≃ HomC (−, G(−)) . (2.38)

Remark 2.34 Note that, given two categoriesC andD and a pair (F,G) of adjoint functors, one
has the following morphism of functors:

F ◦G→ idD, G ◦ F → idC. (2.39)

2.4 Kernel and Cokernel
Definition 2.35: (Co)kernel.
Let C be a preadditive category, with a zero object. LetA f−→ B a morphism in C.

• A kernel of f is a pair (K, ϵ), withK ϵ−→ A satisfying

K1 f ◦ ϵ = 0,
K2 for any ϵ′ : K ′ → A s.t. f ◦ ϵ′ = 0, then ∃ !K ′ α−→ K s.t. ϵ ◦ α = ϵ′, i.e. s.t.
the following diagram commutes

K A B

K ′

ϵ f

∃ !α
ϵ′

0
. (2.40)

• A cokernel of f is a kernel ofB f−→ A inCop. In other words it is a pair (C, p), withB p−→ C
s.t.

CK1 p ◦ f = 0,
CK2 for any p′ : B → C ′ s.t. p′ ◦ f = 0, then ∃ !C γ−→ C ′ s.t. γ ◦ p = p′, i.e. s.t.
the following diagram commutes

A B C

C ′

f

0

p

p′
∃ !γ

. (2.41)

Wedenotewith the uppercaseKer the objectK , andwith the lowercase ker themorphism ϵ : K →
A.
Analogously for the cokernel, we denote with the uppercase Coker the object C , and with the
lower case coker the morphism p : B → C .

Remark 2.36 Property K2 grants that Ker satisfies a universal property (U.P.). Objects that
satisfy universal properties are unique up to a unique isomorphism.
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Definition 2.37: (Co)equalizer.
Let f, g be two parallel morphismsA⇒ B in a category C.

• An equalizer of f and g is a pair (C, e), withC e−→ A, satisfying

eq1 f ◦ e = g ◦ e,

eq2 for (C ′, e′) with C ′ e′−→ A s.t. f ◦ e′ = g ◦ e′, then ∃ !α : C ′ → C s.t.
e ◦ α = e′, i.e. the following diagram commutes

C A B

C ′

e f

g

∃ !α
e′ . (2.42)

• A coequalizer of f and g is an equalizer of f and g in Cop. In other words it is a pair (C, p),
withB p−→ C s.t.

coeq1 p ◦ f = p ◦ g,

coeq2 for (C ′, p′) with B p′−→ C ′ s.t. p′ ◦ f = p′ ◦ g, then ∃ !γ : C → C ′, with
γ ◦ p = p′, i.e. s.t. the following diagram commutes

A B C

C ′

f

g

P

p′
∃ !γ

. (2.43)

Remark 2.38

• The kernel ofA f−→ B is just the equalizer of f and 0, if it exists.

• The cokernel ofA f−→ B is just the coequalizer of f and 0, if it exists.

Lemma 2.39. Let C be a preadditive category with 0 object. Let f : A→ B in C.

• f is a mono (epi) iff f ◦ h = 0 =⇒ h = 0 (h ◦ f = 0 =⇒ h = 0),

• f is a mono (epi) iff 0→ A is a kernel of f (B → 0 is a cokernel of f ),

• A kernel (cokernel) is mono (epi).

Definition 2.40: Ker functor.
Let C be a preadditive category admitting zero object. ConsiderA f−→ B a morphism in C. This
induces a natural transformation f∗ : hA → hB , given by the collection of maps

f∗(X) : hA(X) = HomC (X,A)→ HomC (X,B) = hB(X) (2.44)
α 7→ f ◦ α (2.45)

forX ∈ Ob (C). For anyX ∈ Ob (C), f∗(X) is a morphism of abelian groups, hence it admits
a kernel.

ker f∗(X) =
{
X

α−→ A
∣∣∣ f ◦ α = 0

}
≤ HomC (X,A) . (2.46)

We can define the contravariant functor

F := ker [f∗ : HomC (−, A)→ HomC (−, B)] (2.47)
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That acts on a morphismX
h−→ Y as

F (h) : F (Y )→ F (X) (2.48)
β 7→ β ◦ f. (2.49)

Proposition 2.41. A morphism A
f−→ B in a preadditive category admitting zero object has a kernel

iff the associated functor F is representable. In this case a kernel of f is given by (K, ϵ), as follows: Let
F ≃η HomC (−,K), forK ∈ Ob (C) a representative of F . Then ϵ is given by

HomC (K,K)
ηK−−→ F (K) ⊂ HomC (K,A) (2.50)

1K 7→ ϵ. (2.51)

Definition 2.42: Coker functor.
Let C be a preadditive category admitting zero object. ConsiderA f−→ B a morphism in C. This
induces a natural transformation f∗ : hB → hA, given by the collection of maps

f∗(X) : hB(X) = HomC (B,X)→ HomC (A,X) = hA(X) (2.52)
β 7→ β ◦ f (2.53)

forX ∈ Ob (C). For anyX ∈ Ob (C), f∗(X) is a morphism of abelian groups, hence it admits
a kernel in Ab:

ker f∗(X) =
{
B

β−→ X
∣∣∣ β ◦ f = 0

}
. (2.54)

We can define a covariant functor

F := ker [f∗ : HomC (B,−)→ HomC (A,−)] (2.55)

that acts on a morphismX
h−→ Y as

F (h) : F (X)→ F (Y ) (2.56)
β 7→ h ◦ β. (2.57)

Proposition 2.43. LetC be a preadditive category admitting zero object. The morphismA f−→ B has a
cokernel iffF is corepresentable. In other words, iff there existsC ∈ Ob (C) and a natural isomorphism

F ≃η HomC (C,−) . (2.58)

In this case a cokernel is given by (C, p), with C ∈ Ob (C) a representative of F and p given by

HomC (C,C)→ F (C) ⊂ HomC (B,C) (2.59)
1C 7→ p. (2.60)

Lemma 2.44. Let C be a preadditive category with 0 object. Let A f−→ B be a kernel of some other
morphism. Then, if coker f exists, we have

f = ker (coker f) . (2.61)

Lemma 2.45. Let C be a preadditive category with 0 object. Let A f−→ B be a cokernel of some
morphism. Lat f admit a kernel, then

f = coker (ker f) . (2.62)

12



2.5 Product and Coproduct
Definition 2.46: Product.
Let A,B ∈ Ob (C) for an arbitrary category C. A product of A and B, if it exists, is a triple
(A

∏
B, πA, πB), where A

∏
B ∈ Ob (C), and the morphisms πA and πB in C, called projec-

tions,
A
∏

B
πA−−→ A and A

∏
B

πB−−→ B (2.63)

satisfy the universal property: Given an arbitrary (X,α, β), with X ∈ Ob (C), X α−→ A and
X

β−→ B a pair of morphism, there exists a unique morphismX
∃ !h−−→ A

∏
B s.t.

X

A B

A
∏
B

α β

h∃ !

πA πB

(2.64)

the above diagram commutes. In other words, s.t. α = πA ◦ h and β = πB ◦ h.

Remark 2.47 If it exists, a product, is unique up to a unique isomorphism. This, as usual, is due
to the universal property used to define the product.

Proposition 2.48. Define the functor

F := HomC (−, A)×HomC (−, B) : C→ Sets (2.65)

on objects as F (X) := HomC (X,A)×HomC (X,B), and on morphismsX f−→ Y , for a couple of

arrows Y α−→ A and Y β−→ B, as

F (f) : HomC (Y,A)×HomC (Y,B)→ HomC (X,A)×HomC (X,B) (2.66)
(α, β) 7→ (α ◦ f, β ◦ f) . (2.67)

Aproduct (A
∏
B, πA, πB) exists iff the functorF is representable. In other words iffF ≃η HomC (−, P )

for some P ∈ Ob (C). In this case (P, πA, πB) is a product ofA andB, where (πA, πB) are given by

ηP : HomC (P, P )→ F (P ) = HomC (P,A)×HomC (P,B) (2.68)
1P 7→ (πA, πB) . (2.69)

Example

• C = Sets, then A
∏
B = A × B is the cartesian product of sets, with πA and πB the

projections.

• C = Mod-R, thenA
∏
B = A×B is the set theoretic cartesian product, with compon-

entwise operations. The projections are the set-theoretic projections.

• C = Rings, as above, A
∏
B = A× B is the set theoretic cartesian product, with com-

ponentwise operations. The projections are the set-theoretic projections.
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Definition 2.49: Coproduct.
Let A,B ∈ Ob (C) for an arbitrary category C. A coproduct of A and B, if it exists, is a triple
(A

∐
B, ϵA, ϵB), whereA

∐
B ∈ Ob (C) and the morphisms ϵA and ϵB , called embeddings,

A
ϵA−→ A

∐
B and B

ϵB−−→ A
∐

B (2.70)

satisfy the universal property: Given an arbitrary (X,α, β), with X ∈ Ob (C), A α−→ X and
B

β−→ X a pair of morphism, there exists a unique morphismA
∐
B

∃ !h−−→ X s.t.

A
∐
B

A B

X

ϵA ϵB

h∃ !

α β

(2.71)

the above diagram commutes. In other words, s.t. h ◦ ϵA = α and h ◦ ϵB = β.

Remark 2.50 A coproduct is a product in Cop. Moreover, if it exists, then it is unique up to a
unique isomorphism.

Proposition 2.51. Define the functor

F := HomC (A,−)×HomC (B,−) : C→ Sets (2.72)

on objects as F (X) := HomC (A,X)× HomC (B,X), and on morphismsX f−→ Y , for a couple

of arrows Y α−→ A and Y β−→ B, as

F (f) : HomC (A,X)×HomC (A,X)→ HomC (A, Y )×HomC (A, Y ) (2.73)
(α, β) 7→ (f ◦ α, f ◦ β) . (2.74)

A coproduct (A
∐
B, ϵA, ϵB) exists iff the functor F is corepresentable. In other words iff F ≃η

HomC (C,−) for some C ∈ Ob (C). In this case (C, ϵA, ϵB) is a coproduct of A and B, where
(ϵA, ϵB) are given by

ηC : HomC (C,C)→ F (C) = HomC (A,C)×HomC (B,C) (2.75)
1C 7→ (ϵA, ϵB) . (2.76)

Example

• Let C = Sets, then A
∐
B = A ⊔ B, the disjoint union, with embeddings given by the

inclusions.

• LetC = R-Mod, then RM
∐

RN = (M ×N, ϵM , ϵN ), set-theoretically is the cartesian
product, with componentwise operations and inclusions.

• LetC = CRings the category of commutative rings. ThenR
∐
S = (R⊗Z S, ϵR, ϵS) the

coproduct of two commutative rings is given by their tensor product over Z.

Definition 2.52: Additive category.
Let C be a preadditive category with 0 object. C is said additive iff, given any pair (or finite family)
of objects in C, their product exists in C.
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Proposition 2.53. Let C be a preadditive category with 0 object. If product exist in C, then coproduct
exist and they are isomorphic. In particular we have the following for embeddings and projections:

ϵA =

[
1A
0

]
, πA =

[
1A 0

]
, ϵB =

[
0
1B

]
, πB =

[
0 1B

]
. (2.77)

This implies that these morphisms compose as

πA ◦ ϵA = 1A, πA ◦ ϵB = 0, πB ◦ ϵA = 0, πB ◦ ϵB = 1B . (2.78)

Definition 2.54: (Co)product in preadditive categories.
If C is a preadditive category, and the (co)product between A,B ∈ Ob (C) exists in C, they are
denoted with

A⊕B. (2.79)

Proposition 2.55. LetC be an additive category with 0. LetA,B ∈ Ob (C). The structure of abelian
group ofHomC (A,B) is determined by C.

2.6 Infinite product and coproduct
Definition 2.56: (Co)product of an arbitrary family of objects.
Let {Ai}i∈I ⊂ Ob (C) an arbitrary family of objects in the category C.

• A product of theAis is the couple (
∏
iAi, (πi)i∈I), with

∏
iAi ∈ Ob (C), andmorphisms

πi :
∏
j Aj → Ai for any i ∈ I , satisfying the universal property: Given X ∈ Ob (C)

and a family of morphismsX αi−→ Ai, then ∃ !α : X →
∏
iAi s.t. πi ◦ α = αi for all i.

• A coproduct of the Ais is the couple (
∐
iAi, (ϵi)i∈I), with

∐
iAi ∈ Ob (C), and morph-

isms ϵi : Ai →
∐
j Aj for any i ∈ I , satisfying the universal property: GivenX ∈ Ob (C)

and a family of morphisms Ai
αi−→ X , then ∃ !α :

∐
iAi → X s.t. α ◦ ϵi = αi for all i.

In other words it is a product in Cop.

Example

• Let C = Sets and {Ai}i∈I ⊂ Ob (C). The set
∏
i∈I Ai (the infinite cartesian product),

with usual projections, is a product in Sets,

• Analogously, ⊔i∈IAi (the disjoint union), with the usual embeddings, is a coproduct in
Sets.

• Let C = Mod-R and {Mi}i∈I ⊂ Ob (C). The set∏
i∈I

Mi :=
{
(xi)i∈I

∣∣ xi ∈Mi ∀ i ∈ I
}
. (2.80)

(the infinite cartesian product), with componentwise operations and usual projections, is a
product inMod-R. Clearly, given a family of morphisms αi : X →Mi, one defines

α : X →
∏
i∈I

Mi (2.81)

x 7→ (ai(x))i∈I (2.82)

and easily checks the universal properties of products.
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• Analogously the copruduct exists and is defined as follows∐
i∈I

Mi =
{
(xi)i∈I

∣∣ xi ∈Mi ∀ i ∈ I and xi = 0 for almost all i
}
≤

∏
i∈I

Mi. (2.83)

with the embeddings

ϵi : Mi →
∐
i∈I

Mi (2.84)

x 7→ (. . . , 0, x, 0, . . .) , (2.85)

with nonzero entry only for the i-th component, is a coproduct inMod-R. In fact, given a
family of morphisms αi : Mi → X , the unique morphism is defined as

∃ !α :
∐
i∈I

Mi → X (2.86)

(xi)i∈I 7→
∑
i∈I

αi(xi). (2.87)

It is important to remark that the sum makes sense, since xi ̸= 0 only for finitely many
i ∈ I , hence it is a finite sum.

Proposition 2.57. Let C be an arbitrary category. let {Ai}i∈I ⊂ Ob (C) be an arbitrary family of
objects. Assume that a product

(∏
i∈I Ai, πi

)
exists in C, then givenX ∈ Ob (C), the map

HomC

(
X,

∏
i∈I

Ai

)
ϕX−−→

∏
i∈I

HomC (X,Ai) (2.88)

f 7→ (πi ◦ f)i∈I (2.89)

is an isomorphism in Sets (by U.P.). Moreover the family {ϕX}X∈Ob(C) gives a natural isomorphism
between the functors

F := HomC

(
−,

∏
i∈I

Ai

)
and G :=

∏
i∈I

HomC (−, Ai) , (2.90)

whereG, on morphisms acts as: G(f) =
∏
i∈I HomC (f,Ai).

Proposition 2.58. Let C be an arbitrary category. let {Ai}i∈I ⊂ Ob (C) be an arbitrary family of
objects. Assume that a coproduct

(∐
i∈I Ai, ϵi

)
exists in C, then givenX ∈ Ob (C), the map

HomC

(∐
i∈I

Ai, X

)
ψX−−→

∏
i∈I

HomC (Ai, X) (2.91)

f 7→ (f ◦ ϵi)i∈I (2.92)

is an isomorphism in Sets (by U.P.). Moreover the family {ψX}X∈Ob(C) gives a natural isomorphism
between the functors

F := HomC

(∐
i∈I

Ai,−
)

and G :=
∏
i∈I

HomC (Ai,−) , (2.93)

whereG, on morphisms acts as: G(f) =
∏
i∈I HomC (Ai, f).
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Remark 2.59 Notice that, ifC is preadditive with 0, thenϕX andψX are both isomorphisms of
abelian groups. In particular {ϕX}X∈Ob(C) and {ψX}X∈Ob(C) are both natural isomorphisms
of functors with values in Ab.

Proposition2.60. LetC be an arbitrary category. Let {Ai}i∈I ⊂ Ob (C) , {Bi}i∈I ⊂ Ob (C). Let
{αi}i∈I a family of morphisms s.t. for each i αi : Ai → Bi. Assume that both products

(∏
i∈I Ai, πi

)
and

(∏
i∈I Bi, pi

)
exist in C. Then

∃ !α :
∏
i∈I

Ai →
∏
i∈I

Bi (2.94)

s.t. pi ◦ α = αi ◦ πi. Moreover if, for all i, the morphism αi is a monomorphism, then also α is a
monomorphism.

Proposition 2.61. Let C be an arbitrary category. Let {Ai}i∈I ⊂ Ob (C) , {Bi}i∈I ⊂ Ob (C).
Let {αi}i∈I a family of morphisms s.t. for each i αi : Ai → Bi. Assume that both coproducts(∐

i∈I Ai, ϵi
)
and

(∐
i∈I Bi, δi

)
exist in C. Then

∃ !α :
∐
i∈I

Ai →
∐
i∈I

Bi (2.95)

s.t. α ◦ ϵi = δi ◦ αi. Moreover if, for all i, the morphism αi is am epimorphism, then also α is a
epimorphism.

Proposition 2.62. Let C be an arbitrary category. Consider an arbitrary family {Ai}i∈I ⊂ Ob (C)

s.t. the product
(∏

i∈I Ai, πi
)
(resp. the coproduct

(∐
i∈I Ai, ϵi

)
) exists in C. Assume, moreover,

that HomC (Ai, Aj) ̸= ∅ for i ̸= j ∈ I . It follows that πi (resp. ϵi) is an epimorphism (resp.
monomorphism) for all i ∈ I .

Corollary 2.63. In particular, if C is preadditive with 0 object, then every HomC (X,Y ) ̸= ∅. This
means that πi and ϵi in the above proposition are always respectively epi and mono. In particular, given
A,B ∈ Ob (C), then πA : A

∏
B → A and πB : A

∏
B → B are epi, whereas ϵA : A→ A

∏
B

and ϵB : B → A
∏
B are mono.

3 Abelian categories
Lemma 3.1 (Parallel morphism). Let C be a preadditive category with 0 object. Assume that every
morphism in C admits kernel and cokernel, then

ker f A B coker f

coker ϵ kerπ

ϵ f

p
β

π

f̃

µ (3.1)

∃ ! f̃ : coker ϵ→ kerπ s.t. f̃ ◦ p = β. f̃ is called parallel morphism of f .

Example Let C = Mod-R and A f−→ B. Then coker (ker f) = A/ ker f ad ker (coker f) ≃
im f . By the first isomorphism theorem we have

A/ ker f ≃f̃ im f. (3.2)
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Definition 3.2: Some notation.
We denote the above objects as

coim f := coker (ker f) (3.3)
Im f := ker (coker f) . (3.4)

Definition 3.3: Abelian category.
A category C is said abelian iff it is additive and

1. every morphism has both kernel and cokernel,

2. the parallel morphism f̃ of f is an isomorphism for any f .

The second condition is equivalent to the following

2’. Every morphism f in C factors as νβ with β a cokernel and ν a kernel.

Lemma 3.4. Let f = νβ in C a preadditive category with 0 object.

1. If ν is a mono, then ker f = kerβ, if they exist.

2. If β is epi, then coker f = coker ν , if they exist.

Lemma 3.5. Assume that C is an abelian category. LetA f−→ B be a morphism in C, then

1. If f is mono and epi, then f is iso.

2. If f is mono, then f = ker (coker f).

3. If f is epi, then f = coker (ker f).

Example Let C = Ab. We say that G ∈ Ab is torsion free iff ∀ 0 ̸= x ∈ G, for all n ∈ Z s.t.
nx = 0, then n = 0. InsteadG is torsion iff ∀x ∈ G there exists 0 ̸= n ∈ Z s.t. nx = 0. Given
G ∈ Ab, we denote by t(G) ≤ G the torsion subgroup ofG, i.e.

t(G) := {x ∈ G | ∃ 0 ̸= n ∈ Z s.t. nx = 0} . (3.5)

Clearly, then,G/t(G) is a torsion free group.
Let’s now see a few examples of abelian categories:

• Let C = Mod-R the category of abelian groups. C is abelian: considerAR
f−→ BR, then

coker (ker f) ≃ A/ ker f and ker (coker f) ≃ im f. (3.6)

From the first isomorphism theorem we obtain an isomorphism of the two. Then one can
show that this category is abelian.

• Let T ⊂ Ab the full subcategory of abelian groups consisting of torsion abelian groups,
then T is abelian. This is the case, since ker and coker in T correspond to the notions in
Ab, which is abelian.

The following, instead, are additive, with kernels and cokernels, but not abelian:
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• Let F ⊂ Ab be the full subcategory consisting of the torsion free abelian groups. Clearly F
is closed under subgroups. LetA f−→ B a morphism in F. LetK ϵ−→ A a kernel of f in Ab,
clearlyK ↪→ A, henceK ∈ Ob (F) and f admits kernel in F. Let (C, π) a cokernel inAb.
It might not be in F. ConsiderC/t(C) ∈ Ob (F) andB π−→ C

q−→ C/t(C), then q ◦ π is a
cokernel of f in F. It follows that f admits also cokernel in F.
In other words we have just proved that F admits both kernels and cokernels. But F is not
abelian. In order to show this we consider

ker 2̇ = 0 Z Z 0 = coker 2̇

Z Z

0 2̇

1Z

0

˜̇2 1Z
, (3.7)

where 2̇ : Z → Z is the multiplication by 2. In F we have coker 2̇ = 0, since in Ab

coker 2̇ = Z/2Z, which is torsion. Then, in this example, f̃ = ˜̇2, which is not an iso-
morphism in F (nor inAb, and F is a full subcategory ofAb). Also note that 2̇ is both mono
and epi in F, but not an iso.

• LetG ∈ Ob (Ab) an abelian group. We say thatG is divisible iff ∀x ∈ G and ∀ 0 ̸= n ∈ Z,
∃ y ∈ G s.t. ny = x. Instead an abelian group is called reduced iff it has nononzero divisible
subgroups.
LetD ⊂ Ab the full subcategory consisting of divisible abelian groups. ThenD has kernels
and cokernels, it is also additive, but not abelian.

I’m actually not sure whether the following definition is correct, but I cannot find it on the
internet and I really didn’t understand what was part of the definition during the lecture.

Definition 3.6: Torsion pair of full subcategories.
Let C be an abelian category, and D ⊂ C ⊃ E be two full subcategories. We say that the pair
(D,E) is a torsion pair iff given anyD ∈ Ob (D) andE ∈ Ob (E) we have

HomC (D,E) = 0. (3.8)

Example

• Consider the category Ab of abelian groups and T ⊂ Ab the full subcategory of torsion
abelian groups and F ⊂ Ab the full subcategory of torsion-free abelian groups. The pair
(T, F ) is a torsion pair, in fact, for any T ∈ Ob (T) and F ∈ Ob (F), we have

HomAb (T, F ) = 0. (3.9)

• Consider the full subcategories D ⊂ Ab of all divisible groups and R ⊂ Ab of all reduced
groups. The pair (D,R) is torsion, in fact, for anyD ∈ Ob (D) andR ∈ Ob (R), we have

HomAb (D,R) = 0. (3.10)

3.1 Pullback and Pushout
Definition 3.7: Pullback.
Let C be an arbitrary category. Let A f−→ C and B g−→ C be morphisms in C. A pullback of f
and g is a triple (P, pA, pB), with P ∈ Ob (C), pA : P → A and pB : P → B s.t. the following
conditions are satisfied
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PB1 The following square is commutative

P A

B C

pA

pB f

g

. (3.11)

In other words we ask that f ◦ pA = g ◦ pB .

PB2 For any pair of morphismsX α−→ A andX β−→ B, from a fixedX ∈ Ob (C), s.t.
f ◦ α = g ◦ β then ∃ !X γ−→ P s.t. the following diagram commutes

X

P A

B C

∃ ! γ

α

β

pA

pB f

g

. (3.12)

In other words, s.t. pB ◦ γ = β and pA ◦ γ = α.

Remark 3.8 Notice that PB2 is a universal property. This means that, if a pullback of f and g
exists, then it is unique up to a unique isomorphism.

Example Let C be a preadditive category with 0 object.

• Consider A f−→ C and 0
0−→ C . A pullback of f and 0 exists iff ker f exists in C. In

particular (P, pA) is a kernel of f .

• Consider A 0−→ 0 and B 0−→ 0. The pullback of 0 and 0 exists iff the product of A and B
exists, then the triple (P, pA, pB) is a product ofA andB:

P A

B 0

pA

pB 0

0

. (3.13)

Proposition 3.9. Let C be a preadditive category with 0 object. If C admits kernel and finite products,
then C has pullbacks. Moreover these are constructed by means of products and kernels.

Proof. The construction via kernels and products goes as follows: Consider the morphismsA f−→
C andB g−→ C . Let (A

∏
B, πA, πB) be a product. Let µ := f ◦ πA − g ◦ πB : A

∏
B → C .

Finally, consider (K, ϵ) a kernel of µ. Then (K, pA, pB), with pA := πA ◦ ϵ and pB = πB ◦ ϵ,
is a pullback of f and g. The corresponding diagram is

K

B
∏
A A

B C

ϵ

pA

pB

πA

πB
µ f

g

. (3.14)

■
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Example Consider an abelian category C, for example the categoryMod-R. Take two morph-
ismsA f−→ C andB g−→ C , then the pullback of f and g is a submoduleP ≤ A⊕B, in particular
it is

P = {(a, b) ∈ A⊕B | µ (a, b) = 0} (3.15)
= {(a, b) ∈ A⊕B | f(a) = g(b)} . (3.16)

Proposition 3.10. Let C be preadditive with 0 object. Let

P A

B C

pA

pB f

g

(3.17)

be a pullback diagram, then:

• If g (resp. f ) is mono, then pA (resp. pB ) [the parallel arrow] is mono.

• If C is abelian and g (resp. f ) is epi, then pA (resp. pB ) is epi.

• If g (resp. f ) is a kernel of h, then pA (resp. pB ) is a kernel of h ◦ f (resp. h ◦ g).

Example: An application of the above result. Let C be an abelian category. Consider the
following pullback diagram of the morphisms f and g

P A

B C

pA

pB f

g

. (3.18)

Assume that g is epi. Take (K, ϵ) a kernel of g, then ∃ !δ : K → P s.t. the following diagram
commutes

K P A

K B C

δ pA

pB f

ϵ

1K

g

. (3.19)

Moreover δ is a kernel of pA (hence it is a monomorphism).

Definition 3.11: Pushout.
Let C be an arbitrary category. A pushout of morphismsC f−→ A andC g−→ B in C is a pullback in
Cop. This means that we can dualize every result for the pullback.

More explicitly, a pushout is a triple (P, νA, νB), with P ∈ Ob (C), νA : A → P , and
νB : B → P morphisms s.t. the following conditions are satisfied

PO1 The following square is commutative

C A

B P

f

g νA

νB

. (3.20)

In other words we ask that νA ◦ f = νB ◦ g.
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PO2 For any pair of morphisms A α−→ X and B β−→ X , into a fixedX ∈ Ob (C), s.t.
α ◦ f = β ◦ g, then ∃ !P γ−→ X s.t. the following diagram commutes

C A

B P

X

f

g νA
α

νB

β

∃ ! γ

. (3.21)

In other words, s.t. γ ◦ νA = α and γ ◦ νB = β.

Example Let C be a preadditive category with 0 object.

• Consider C f−→ A and C 0−→ 0. A pushout of f and 0 exists iff coker f exists in C. In
partcular (P, νA) is a cokernel of f .

• Consider 0 0−→ A and 0 0−→ B. The pushout diagram of 0 and 0 exists iff the coproduct of
A andB exists. Then the triple (P, νA, νB) is a coproduct ofA andB:

0 A

B P

0

0 νA

νB

. (3.22)

Proposition 3.12. Let C be a preadditive category with 0 object. If C admits cokernels and finite
coproducts, then C has pushouts. Moreover these are constructed by means of coproducts and cokernels.

Proof. The construction goes as follows: Consider the morphisms C f−→ A and C g−→ B. Let
(A

∐
B, ϵA, ϵB) be a coproduct. Let δ := ϵA ◦ f − ϵB ◦ g : C → A

∐
B. Finally consider

(P, p) a cokernel of δ. Then (P, p ◦ ϵA, p ◦ ϵB) is a pushout of f and g. The corresponding
diagram is

C A

B A
∐
B

P

δ

f

g ϵA

ϵB

p

. (3.23)

■

Proposition 3.13. Let C be preadditive with 0 object. Let

C A

B P

f

g νA

νB

(3.24)

be a pushout diagram, then:

• If f (resp. g) is epi, then νB (resp. νA) [the parallel arrow] is epi.
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• If C is abelian and f (resp. g) is mono, then νB (resp. νA) is mono.

• If f (resp. g) is a cokernel of h, then νB (resp. νA) is a kernel of g ◦ h (resp. f ◦ h).

Example Let C = Mod-R. Consider the morphisms C f−→ A and C g−→ B. Then a pushout
P ≃ A⊕B

H , whereH is the image of δ as defined above, more explicitly

H := ⟨(f(c),−g(c)) | c ∈ C⟩ . (3.25)

More explicitly, the image ofC inA andB (resp. via f and g) are glued together in P .

Example: An application of the above result. Let C be an abelian category. Consider the
following pushout diagram of the morphisms f and g

C A

B P

f

g νA

νB

. (3.26)

Assume that f ismono. Take (D, p) a cokernel of f , then∃ ! q : P → D s.t. the following diagram
commutes

C A D

B P D

f

g

p

νA

νB q

. (3.27)

Moreover q is a cokernel of νB (hence it is an epimorphism).

3.2 Exact categories

Remark 3.14 Let C be an abelian category and A i−→ B
d−→ C morphisms in C, s.t. i = ker d

and d = coker i. Then i is mono, d is epi and ker d = im i. In fact

0 A B C

coim i = A ker d = im i

i

1A

d

∼
. (3.28)

Definition 3.15: Kernel-cokernel pair.
Let C be an additive category. A kernel cokernel pair (i, d) in C is a pair of composable morphisms

A
i−→ B

d−→ C (3.29)

s.t. i is a kernel of d and d is a cokernel of i.

Definition 3.16: Inflation, deflation, conflation.
Let E be a fixed class of kernel-cokernel pairs in C. A sequenceE = (i, d) ∈ E

A
i−→ B

d−→ C (3.30)

is called a conflation. A morphism i : A ↣ B s.t. there exists a morphism d with (i, d) ∈ E is
called inflation. A morphism d : B ↠ C s.t. there exists a morphism i with (i, d) ∈ E is called
deflation. Sometimes they are called admissible mono and admissible epi.
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Definition 3.17: Exact structure.
Given an additive category C, an exact structure on C is a class E of ker-coker pairs satisfying the
following axioms and closed under isomorphisms, i.e. given a commutative diagram

A B C

A′ B′ C ′

i

α

d

β γ

i′ d′

, (3.31)

in which all the vertical arrows are isomorphisms, and (i, d) ∈ E , then also (i′, d′) ∈ E .

Ex0 10 is a deflation,

Ex0op 10 is an inflation,

Ex1 the class of deflations is closed under compositions,

Ex1op the class of inflations is closed under compositions,

Ex2 the pullback of a deflation along an arbitrary morphism exists and is a deflation,

Ex2op the pushout of an inflation along an arbitrarymorphism exists and is an inflation.

These last 2 axioms correspond to the following diagrams

Ex2 :
Y ′ Z ′

Y Z

d′

f ′ f

d

Ex2op :

X Y

X ′ Y ′

i

f f ′

i′

. (3.32)

The interpetation is as follows (for the first diagram): given a deflation d : Y → Z and a morph-
ism f : Z ′ → Z , then, if the pullback of (d, f) exists, let’s denote it with (Y ′, f ′, d′), also
d′ : Y ′ → Z ′ is a deflation. (These axioms are defined to reflect the properties one can find
in abelian categories. In fact these last diagrams are a parallel to the last ones of the previous
section).

Definition 3.18: Exact category.
An exact category is a pair (C, E), with C an additive category and E an exact structure on C.
Conflations in E are called short exact sequences.

Remark 3.19 E is an exact structure in C iff Eop is an exact structure in Cop.

Remark 3.20 An abelian category C with E given by all of its ker-coker pairs is an exact cat-
egory.

Definition 3.21: Extensions closed subcategory.
Given an abelian category C, a full subcategory C′ ⊂ C is extensions closed iff, given a ker-coker
pairA i−→ B

d−→ C withA,C ∈ Ob (C′), thenB ∈ Ob (C′)

Remark 3.22 An extensions closed subcategory of an abelian category is an exact category, but
need not be abelian. In fact

• F ⊂ Ab the full subcategory of torsion free abelian groups,

• D ⊂ Ab the full subcategory of divisible abelian groups,
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are both extensions closed in Ab, but are not abelian. For the first, in fact, given

A
i−→ B

d−→ C, (3.33)

with A,C ∈ Ob (F), then B/i(A), i(A) ∈ Ob (F). From this it can be easily proved that also
B ∈ Ob (F).

The following proposition can be found in the paper Chain complexes and stable categories, by
B. Keller. Also in the PhD thesis of T. Bühler Exact categories (For more precise references see
lecture 8-1, minute 20).

Proposition 3.23 (Keller). The axioms of exact categories are redundant. The following are enough
Ex0, Ex1, Ex2, Ex2op. They imply:

a givenX,Y ∈ Ob (C), then the following is a conflation

X

1
0


−−−→ X ⊕ Z

[
0 1

]
−−−−−→ Z. (3.34)

b Ex1op.

c Quillen’s obscure axioms: If a morphism d has a kernel and if d ◦ e is a deflation for some
morphism e, then also d is a deflation.

cop Quillen’s obscure axioms: If a morphism i has a cokernel and if k ◦ i is an inflation for
some morphism k, then also i is an inflation.

4 (Co)limits
We will concentrate on an arbitrary category C, and on a small category I, i.e. a category where
Ob (I) andMorph I, the family of all morphisms in the category I, are sets. Consider a functor

F : I→ C. (4.1)

Then ∀ i ∈ Ob (I), F (i) ∈ Ob (C) and, given a morphism λ : i → j in I, then F (λ) : F (i) →
F (j).

Definition 4.1: Compatible family with respect to F .
Consider a family {αi}i∈Ob(I) of morphisms αi : X → F (i) for a fixedX ∈ Ob (C). It is said
to be a compatible family with respect to F iff given any morphism λ : i → j in I, the following
triangle commutes

X F (i)

F (j)

αi

αj
F (λ) . (4.2)

In other words iff αj = F (λ) ◦ αi for every i, j ∈ Ob (I) and every λ : i→ j.

Definition 4.2: Projective (inverse) limit.
A (projective/inverse) limitofF is an object inC, denotedwith lim←−F , withmorphismspi : lim←−F →
F (i) for all i ∈ Ob (I) satisfying the following conditions

25



LIM1 {pi}i∈Ob(I) is a compatible family of morphisms, i.e.

lim←−F F (i)

F (j)

pi

pj
F (λ) (4.3)

the above diagram commutes for all i, j ∈ Ob (I) and all λ : i→ j.

LIM2 For anyX ∈ Ob (C) and any compatible family of morphisms {αi}i∈Ob(I), with
αi : X → F (i), ∃ !α : X → lim←−F s.t. pi ◦ α = αi ∀ i ∈ Ob (I), i.e.

X F (i)

lim←−F

αi

α
pi

. (4.4)

Remark 4.3 As always, since it is defined through a universal property, if (lim←−F, pi) exists, itis unique up to unique isomorphism.

Example Let I be a small discrete category, i.e. the morphisms in I are only the identities. Then,
for any functor F : I → C, lim←−F exists iff

∏
i∈Ob(I) F (i) exists and they are isomorphic. In

particular the pi s correspond with the projections of the product.

Example Consider, in an arbitrary category C, the following diagram

A1

A2 A3

f1

f2

. (4.5)

Consider the category IwithOb (I) = {1, 2, 3} and morphism (other than the identities) 1→ 3
and 2→ 3. Consider the functor F : I→ C defined as follows:

F (i) = Ai, F (1→ 3) = f1, F (2→ 3) = f2,. (4.6)
Then any lim←−F corresponds to a pullback of the above diagram.

Definition 4.4: Complete category.
A category C is called complete iff every functor F : I → C, from a small category I, admits limit
in C.

Remark 4.5: Some terminology.
Assume that a preadditive categoryC has arbitrary products. Consider a functorF : I→ C, from
a small category I. For any morphism λ : i→ j in I, let’s define

s(λ) := i and t(λ) := j, (4.7)

where sdenotes the source and t the target of themorphism. Consider a product
(∏

i∈Ob(I) F (i), πi

)
of {F (i)}i∈I , and the diagram ∏

i∈Ob(I) F (i) F (s(λ))

F (t(λ))

πs(λ)

πt(λ)
F (λ) . (4.8)
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In general it is not commutative, but we can define the morphism

σλ := F (λ) ◦ πs(λ) − πt(λ) :
∏

i∈Ob(I)

F (i)→ F (t(λ)) . (4.9)

Let’s now consider the product
(∏

λ∈Λ F (t(λ)) , qλ
)
, indexed by λ ∈ Λ := Morph I. By the

universal property of products, the family {σλ}λ∈Λ induces a unique morphism

σ :
∏

i∈Ob(I)

F (i)→
∏
λ∈Λ

F (t(λ)) (4.10)

s.t. qλ ◦ σ = σλ.

Proposition 4.6. If a (preadditive) category C admits kernels and (arbitrary) products, then for every
functor F : I→ C, from a small category I, C admits lim←−F . Moreover the limit is constructed by means
of kernels and products.

Proof. The proof wants to show that the following construction actually is a limit forF . Consider
(K, ϵ) a kernel for the morphism constructed above

σ :
∏

i∈Ob(I)

F (i)→
∏
λ∈Λ

F (t(λ)) . (4.11)

Then (K, pi), for pi := πi ◦ ϵ is a projective limit of F . ■

Example Let C = Mod-R and (I,≤) a partially ordered set, viewed as a category. Consider a
contravariant functor

F : Iop → Mod-R. (4.12)

This is equivalent to the data of F (i) =:Mi ∈ Mod-R, and, for all i ≤ j of

F (i→ j) =: fij : Mj →Mi. (4.13)

Now, given i ≤ j ≤ k, then the following diagram commutes

Mk Mj

Mi

fjk

fik
fij , (4.14)

in other words fij ◦ fjk = fik . Moreover we require fii = idMi .
We have, in fact, a correspondence, between contravariant functors from partially ordered

sets and inverse systems ofmodules, which are families {Mi, Fij}i≤j ofmodulesMi andmorph-
ism fij between them, satisfying the above compatibility conditions.

Then, lim←−F is called the inverse limit of {Mi, fij}i≤j . The morphisms fij are called the
structural morphisms of the inverse system. Sometimes this is also denoted with lim←−Mi.

Let’s describe lim←−Mi explicitly: for every i ≤ j we have the (not necessarily commutative)
diagram ∏

i∈Ob(I)Mi Mj

Mi

πj

πi

fij . (4.15)
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Let’s define, for each i ≤ j, σij := fij ◦ πj − πi. Then, by universal property of the product,
∃ !σ :

∏
i∈Ob(I)Mi →

∏
i≤jMij , whereMij :=Mi for every i ≤ j. In the above construction

πi ◦ σ = σij :
∏
i∈Ob(I)Mi →Mij . Then we have

lim←−Mi ≃ kerσ =

x ∈
∏

i∈Ob(I)

Mi

∣∣∣∣∣∣ σ(x) = 0 i.e. σij(x) = 0∀ i ≤ j

 (4.16)

=

x = (xi)i∈Ob(I) ∈
∏

i∈Ob(I)

Mi

∣∣∣∣∣∣ fij(xj) = xi, ∀ i ≤ j

 . (4.17)

It is a submodule of the product, in which, chosen xj , then ∀ i ≤ j, xi is determined by xj , via
the structural morphisms.

Definition 4.7: I-adic topology on a ring.
Given a commutative ring R and an ideal I ◁ R of R. We define the I-adic topology on R as the
linear topology determined by {In}n∈N as a basis for the neighbourhoods of 0. The open subsets
are generated by cosets of these ideals.

Remark 4.8 The I-adic topology onR is Hausdorff iff
⋂
n∈N I

n = 0.

Example: Completionof a ring in the I-adic topology. LetR be a commutative ring and I◁R
an ideal ofR. For n ≤ m, then Im ⊂ In, hence the canonical projections

πn,m : R/Im → R/In (4.18)
x+ Im 7→ x+ In (4.19)

are well defined. We can check that {R/In, πn,m}n≤m is a countable inverse system.

lim←−R/I
n =

{
(xn + In)n∈N ∈

∏
n∈N

R/In

∣∣∣∣∣ πn,m (xm + Im) = xn + In ∀n ≤ m

}
(4.20)

=

{
(xn + In)n∈N ∈

∏
n∈N

R/In

∣∣∣∣∣ xm − xn ∈ In ∀n ≤ m
}
. (4.21)

This is the completion ofR in the I-adic topology. It is called completion since, given {xn}n∈N it
is a Cauchy sequence iff ∀V neighbourhood of 0, ∃n0 ∈ N s.t. xn−xm ∈ V for all n,m ≥ n0.
Moreover we can define a neat Cauchy sequence as a sequence {xn}n∈N s.t. ∀Vn := In m then
xm − xn ∈ Vn for allm ≥ n.

In particular an element (xn + In)n∈N ∈ lim←−R/I
n can be viewed as a limit of the Cauchy

sequence {xn}n∈N. (This is the reason why it can be seen as the completion in the topology).
Moreover we have a canonical projection

µ : R→ lim←−R/I
n (4.22)

x 7→ (x+ In)n∈N . (4.23)

Clearly kerµ =
⋂
n∈N I

n (i.e. µ is injective iffR is Hausdorff with the I-adic topology).

Example: p-adic completion of the ring of integers. LetR := Z and I := pZ.

Ẑp := lim←−Z/pnZ (4.24)
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is the p-adic completion of the ring of integers. An element ζ ∈ Ẑ can be written as

ζ = a0 + a1p+ a2p
2 + . . . , (4.25)

with 0 ≤ ai < p for all i ≥ 1. In fact x0 + pZ = a0 + pZ, with 0 ≤ a0 < p. Then
x1 − x0 ∈ pZ, hence x1 = a0 + a1p. Then, by induction, given xn = a0 + a1p+ . . .+ anp

n

and xn+1 − xn ∈ pn+1Z, hence

xn+1 = a0 + . . .+ an+1p
n+1. (4.26)

4.1 The functor projective lim
Fix I a small category and let C be a complete category. Let CI be the functor category.
Proposition 4.9.

lim←− : CI → C (4.27)
F 7→ lim←−F (4.28)

is a functor.

Proof. Given η : F → G a natural transformation between the functors F,G ∈ CI, the functor
associates it a morphism in the natural way

lim←− η : lim←−F → lim←−G. ■

Let’s study a little the category CI, for a small category I.
Proposition 4.10. CI inherits the properties of C. More explicitly if C is preadditive/additive/abelian,
then also CI is preadditive/additive/abelian.

Moreover construction in C can be done in CI locally, for every i ∈ Ob (I). For instance:

• Given η, ζ ∈ HomCI (F,G), if C is preadditive, then (η + ζ)i = ηi + ζi, for each object
i ∈ Ob (I).

• If C has products, then also CI has products. In particular, given two functors F,G ∈ Ob
(
CI
)
,

we need to define the product (FΠG, πF , πG), s.t. this is a product ofF andG inCI. On objects
it is defined as expected

(F
∏

G)(i) := F (i)
∏

G(i). (4.29)

Moreover, on morphisms it is defined as follows: given λ : i→ j, then(
F
∏

G
)
(λ) =

[
F (λ) 0
0 G(λ)

]
, (4.30)

is our morphism (FΠG) (λ) : F (i)ΠG(i) → F (j)ΠG(j). Finally we have to define the
projections. They are constructed naturally as

(πF )i := πF (i) and (πG)i := πG(i). (4.31)

• If C has kernels, then also CI has. Let η : F → G be a natural transformation. Let’s define ker η
as an object of CI. For every i ∈ Ob (I) we defineK(i) := ker ηi as an object in C. This, for
any morphism λ : i→ j, gives rise to the commutative diagram

K(i) F (i) G(i)

K(j) F (j) G(j)

∃ ! ν

ϵi ηi

F (λ) G(λ)

ϵj ηj

. (4.32)
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From this we defineK(λ) := ν . Then, the couple
(
K, {ϵi}i∈Ob(I)

)
is the kernel of{ηi}i∈Ob(I).

• If C has cokernels, then also CI has. Let η : F → G be a natural transformation. Let’s define
coker η as an object of CI. For every i ∈ Ob (I) we define C(i) := coker ηi as an object in C.
This, for any morphism λ : i→ j, gives rise to the commutative diagram

F (i) G(i) C(i)

F (j) G(j) C(j).

ηi

F (λ) G(λ)

pi

∃! ν

ηj pj

(4.33)

From this we defineC(λ) := ν . Then, the couple
(
C, {pi}i∈Ob(I)

)
is the cokernel of{ηi}i∈Ob(I).

4.2 Characterization of projective limit
Let, as before, I be a small category, and CI the category of functors F : I→ C.

Definition 4.11: Constant functor.
Consider a fixedX ∈ Ob (C). We define the constant functor

∆X : I→ C. (4.34)

On objects as∆X(i) = X for all i ∈ Ob (I). On morphism∆X(λ) = idX for all λ : i→ j.

Definition 4.12: Diagonal functor.
We define, in terms of the constant functor, the diagonal functor

∆: C→ CI. (4.35)

On objects as∆(X) := ∆X . On morphisms f : X → Y , then

∆(f) := f̄ : ∆X → ∆Y , (4.36)

where f̄ is a natural transformation s.t. for every i ∈ Ob (I), f̄i = f .

Definition 4.13: Some notation for the following proposition.
Fix a functor F ∈ CI. LetH : Cop → Sets be a contravariant functor from C, defined as follows.
On the objects Y ∈ Ob (C),H(Y ) := Nat (∆Y , F ). On the morphisms, for f : X → Y ,

H(f) : Nat (∆Y , F )→ Nat (∆X , F ) (4.37)
η 7→ η ◦ f̄ . (4.38)

Proposition 4.14. Given a functor F ∈ CI, then lim←−F exists iff the functor H defined above is
representable. In other words iff ∃P ∈ Ob (C) s.t. the following two functors are naturally isomorphic

HomC (−, P ) ≃φ H = Nat
(
∆(−), F

)
. (4.39)

In such case P ≃ lim←−F , and the compatible family is defined as

φP : HomC (P, P )→ Nat (∆P , F ) (4.40)
1P 7→ p̄ = {pi}i∈Ob(I) . (4.41)
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4.3 Colimits
Let’s dualize the notion of limit, to obtain the notion of colimit. As usual we consider I a small
category, and F : I→ C a functor.

Before we introduce the notion of colimit let’s dualize that of compatible family

Definition 4.15: Compatible family.
FixX ∈ Ob (C) and consider a family {αi}i∈Ob(I) of morphisms αi : F (i) → X . This is said
to be a compatible family with respect to F iff, given any morphism λ : i → j in I, the following
triangle commutes

F (i) X

F (j)

αi

F (λ)
αj . (4.42)

In other words iff αi = αj ◦ F (λ) for every i, j ∈ Ob (I) and every λ : i→ j.

Definition 4.16: Colimit/Injective (inverse) limit.
A colimit ofF , denotedwith lim−→F is a limit ofF inCop. More explicitly a colimit is an object inC,
still denoted with lim−→F , with morphisms µi : F (i)→ lim−→F satisfying the following conditions

CoLIM1 {µi}i∈Ob(I) is a compatible family of morphisms, i.e.

F (i) lim−→F

F (j)

µi

F (λ)
µj (4.43)

the above diagram commutes for all i, j ∈ Ob (I) and all λ : i→ j.

CoLIM2 For any X ∈ Ob (C) and any compatible family of morphisms {αi}i∈Ob(I),
with αi : F (i)→ X , ∃ !α : lim−→F → X s.t. α ◦ µi = αi ∀ i ∈ Ob (I), i.e.

F (i) X

lim−→F

αi

µi α
. (4.44)

Remark 4.17 As always, since it is defined through a universal property, if
(
lim−→F, µi

)
exists,

it is unique up to a unique isomorphism.

Example Let I be a small discrete category, i.e. the morphisms in I are only the identities. Then,
for any functor F : I → C, lim−→F exists iff

∐
i∈Ob(I) F (i) exists and they are isomorphic. In

particular the µi s correspond with the embeddings of the coproduct.

Example Consider, in an arbitrary category C, the following diagram

A3 A1

A2

f1

f2 . (4.45)
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Consider the small category I, withOb (I) := {1, 2, 3} and morphisms, other than the identities,
3→ 1 and 3→ 2. Consider the functor F : I→ C defined as follows:

F (i) = Ai, F (3→ 1) = f1, F (3→ 2) = f2. (4.46)

Then any colimit of F corresponds to a pushout of the above diagram.

Definition 4.18: Cocomplete category.
A category C is called cocomplete iff every functor F : I → C, from a small category I, admits
colimit in C.

Proposition 4.19. If a (preadditive) category C admits cokernels and (arbitrary) coproducts, then for
every functor F : I → C, from a small category I, C admits lim−→F . Moreover the colimit is constructed
by means of cokernels and coproducts.

Proof. As above, the proof wants to show that the following construction actually is a direct limit
for F . Consider

(∐
i∈Ob(I) F (i), ϵi

)
the coproduct of F (i). Define

ψλ := ϵt(λ) ◦ F (λ)− ϵs(λ) : F (s(λ))→
∐

i∈Ob(I)

F (i). (4.47)

Then the family ψλ induces a unique

ψ :
∐
λ∈Λ

F (s(λ))→
∐

i∈Ob(I)

F (i) (4.48)

s.t. ψ ◦ ϵs(λ) = ψλ. Moreover, we recall that Λ := Morph I. Then, denoted by (C, p) a cokernel
of ψ, (C, µi), where µi := p ◦ ϵi, is an injective limit of F . ■

Fix a small category I and let C be a cocomplete category.

Proposition 4.20.

lim−→ : CI → C (4.49)
F 7→ lim−→F (4.50)

is a functor.

Proof. It is clear how the functor acts on objects. Let’s define how it acts on η : F → G a natural
transformation between the functorsF,G ∈ CI. It associates to η a morphism in the natural way

lim−→ η : lim−→F → lim−→G. ■

Proposition 4.21. Given a functor F ∈ CI, then lim−→F exists iff the functor

H : C→ Sets (4.51)
Y 7→ Nat (F,∆Y ) (4.52)

is corepresentable. In other words iff ∃C ∈ Ob (C) s.t. the following two functors are naturally iso-
morphic

HomC (C,−) ≃φ H = Nat
(
F,∆(−)

)
. (4.53)

In such case C ≃ lim−→F , and the compatible family is defined as

φC : HomC (C,C)→ Nat (F,∆C) (4.54)
1C 7→ µ̄ = {µi}i∈Ob(I) . (4.55)
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Let’s now describe a particular case of colimits:

Example Let C := Mod-R and (I,≤) a partially ordered set, viewed as a category. Consider a
functor

F : I→ Mod-R. (4.56)

This is equivalent to the data of F (i) =:Mi ∈ Mod-R and, for all i ≤ j, of

F (i→ j) =: fji : Mi →Mj . (4.57)

Now, given i ≤ j ≤ k, then the following diagram commutes

Mi Mj

Mk

fji

fki
fkj

, (4.58)

in other words fkj ◦ fji = fki. Moreover we require fii = idMi
.

We have, in fact, a correspondence, between functors from partially ordered sets and direct
systems of modules, which are families {Mi, fij}i≤j of modulesMi and morphism fij between
them, satisfying the above compatibility conditions.

Then, lim−→F is called the direct limit of {Mi, fij}i≤j . The morphisms fij are called the struc-
tural morphisms of the direct system. Sometimes this is also denoted with lim−→Mi.

Let’s describe lim−→Mi explicitly: for every i ≤ j we have the (not necessarily commutative)
diagram

Mi

⊕
i∈Ob(I)Mi

Mj

ϵi

fji
ϵj

. (4.59)

Let’s define, for each i ≤ j, ψij := ϵj ◦ fji − ϵi. Then, by universal property of the coproduct,
∃ !ψ :

⊕
i≤jMij →

⊕
i∈Ob(I)Mi, whereMij := Mi for every i ≤ j. In the above construc-

tion ψ ◦ ϵi = ψij : Mij →
⊕

i∈Ob(I)Mi. Then we have

lim−→Mi ≃ cokerψ =

⊕
i∈Ob(I)Mi

Imψ
, (4.60)

where Imψ is generated by

{ϵj ◦ fji(xi)− ϵi(xi) | xi ∈Mi, i ≤ j} ⊂
⊕

i∈Ob(I)

Mi. (4.61)

In particular the generators of Imψ are of the form

(. . . , 0, . . . , 0, xi, 0, . . . , 0,−fji(xi), 0, . . . , 0, . . .) . (4.62)

It is a submodule of the product, in which xi, in position i, and fji(xi), in position j ≥ i, are
identified.

Definition 4.22: Directed poset.
A poset (I,≤) is said directed (or filtered) iff

∀ i, j ∈ I ∃ k ∈ I s.t. i ≤ k and i ≤ k. (4.63)

33



Moreover, if (Mi, fji)i≤j , for I filtered, then lim−→Mi is called directed (or filtered) limit. In
general it is easier to describe a colimit on a directed poset.

Before giving an example of one such limit, let’s recall a definition:

Definition 4.23: Finitely generated module.
A moduleMR is finitely generated iff there is an epimorphism ϕ : RN :=

⊕N
i=1R → M , for

someN ∈ N. If we denote by ei the generators ofRN , then ϕ(ei) = xi are the generators ofM .
In other words we are saying that there exists {x1, . . . , xN} ⊂M a finite set of generators such
that, for all x ∈ R there exist r1, . . . , rn ∈ R s.t.

x =

N∑
i=1

xiri. (4.64)

Definition 4.24: Finitely presented module.
For a finitely generated module, with epimorphism ϕ : RN →M , we denote byK := kerϕ, the
module of relations ofM :

K =

{
(r1, . . . , rN ) ∈ RN

∣∣∣∣∣
N∑
i=1

xiri = 0

}
. (4.65)

We say thatK is the module of relations ofM (also known as the first syzygy module). We say
thatM is finitely presented if, being finitely generated, has also finitely generated first syzygy
module.

Example LetM ∈ Mod-R. Consider the family

F := {N ≤M |N is finitely generated } . (4.66)

Let’s label the elements N ∈ F as N = Ni, for some index i ∈ I, with I a set of indices. Let’s
define a partial order on I: i ≤ j iff Ni ⊂ Nj . Moreover, if i, j ∈ I, then Ni + Nj is finitely
generated, hence ∃ k ∈ I s.t. Ni +Nj = Nk , for some k ∈ I. This makes (I,≤) a filtered poset.
We then label the inclusions as ϵji : Ni → Nj and ϵi : Ni →M . Clearly this makes (Ni, ϵji)i≤j
into a directed system.
Proposition 4.25. Every R-Mod M is a directed limit of its finitely generated submodules. More
explicitly, in the above notation,

(M, ϵi) ≃ lim−→Ni. (4.67)

Example: Prüfer group. An example of a direct limit construction in C = Ab. LetMn :=
Z/pnZ = ⟨cn⟩, for n ∈ N and p ∈ N a prime number. Notice that cn has order pn, hence
pncn = 0. We define the structural morphisms of the direct system as

fn+1,n : Z/pnZ→ Z/pn+1Z (4.68)
cn 7→ p · cn+1 (4.69)

extending it by linearity. Moreover, composing consecutive maps, we obtain

fm,n : Z/pnZ→ Z/pmZ (4.70)
cn 7→ pm−ncm (4.71)

(also this extended by linearity). Clearly {Z/pnZ, fm,n}n≤m is a directed system (compatibility
follows from the definition of fm,n). We can consider the directed limit, denoted as follows, and
called Prüfer group

lim−→Z/pnZ = Z(p∞) ≃
⋃
n∈N
⟨cn⟩ , (4.72)
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where, in the last union, we consider the map fn+1,n as the inclusion of ⟨cn⟩ in ⟨cn+1⟩. Carrying
out the construction described in the proposition we obtain that

lim−→⟨cn⟩ ≃
⊕

n∈N ⟨cn⟩
⟨(cn,−p · cn+1) | n ∈ N⟩

. (4.73)

4.4 Direct limit of modules
Lemma4.26. LetC = Mod-R and (I,≤) be a filtered poset. Let {Mi, fji}i≤j be a directed system of

modules. In the notation of proposition 4.19, the directed limit
(
lim−→Mi, µi

)
, has the compatible family

of maps
Mi lim−→Mi

⊕
i∈IMi

µi

ϵi
p

. (4.74)

Where µi := p ◦ ϵi and p = cokerψ. If we denote with D := Imψ, then every element x ∈
lim−→Mi = (

⊕
Mi)/D can be written as µi(xi), for some i ∈ I and xi ∈Mi.

(Then we can interpret lim−→Mi =
∑
i∈I µi(Mi)).

Proof. The idea is simply the fact that I is filtered (hence for any finite set of indices we can find
an index which is bigger than all of them). Given this one can easily use the relations to express
any finite sum in terms of an element from a singleMk . ■

Lemma 4.27. In the above notation and hypothesis, let x = xi1 + . . . + xin ∈
⊕

i∈IMi. x ∈ D
iff ∃ k ∈ I, k ≥ i1, . . . , in s.t.

fk,i1(xi1) + . . . fk,in(xin) = 0 ∈Mk. (4.75)

Lemma 4.28. In the above notation and hypothesis, let xi ∈Mi. Then

µi(xi) = 0 ∈ lim−→Mi ⇐⇒ ∃ j ≥ i ∈ I s.t. fji(xi) = 0. (4.76)

Proposition 4.29. LetMR ∈ Mod-R, thenMR is a direct limit of finitely presented modules.

5 Exactness

5.1 Subobjects and quotients
Definition 5.1: Subobject.
Let A be an object of a category (abelian) C. Consider two monomorphism f : B → A and
g : C → A. We say that f ∼ g iff ∃α : B → C an isomorphism s.t. the following diagram
commutes

B A

C

f

α
g (5.1)

in other words s.t. g ◦ α = f . Clearly this is an equivalence relation. An equivalence class of
monomorphisms ending in A is called a subobject of A. Chosen a representative f : B → A we
denote the corresponding subobject byB ⊆ A.
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Moreover, givenB1 andB2 subobjects ofA, we say thatB1 is a subobject ofB2, denoted by
B1 ⊆ B2, iff ∃α : B1 → B2 a morphism s.t. the following diagram commutes

B1 A

B2

f1

α
f2 (5.2)

i.e. s.t. f2 ◦ α = f1. Notice that, in this case, α has to be mono.

Remark 5.2 IfB1 ⊆ B2 ⊆ A andB2 ⊆ B1, thenB1 andB2 represent the same subobject of
A.

Let’s now give the dual definition.

Definition 5.3: Quotient.
Consider f : A→ B and g : A→ C two epimorphisms. We say that f ∼ g iff ∃α : B → C an
isomorphism s.t. the following diagram commutes

A B

C

f

g
α (5.3)

i.e. s.t. α ◦ f = g. Given one such morphism f : A → B we call the equivalence class a quotient
ofA.

Remark 5.4: notation.
Assume that f : B → A is a subobject of A (i.e. f is a mono). We write A/B for the quotient
object represented by coker f .

Lemma 5.5. Let C be an abelian category. Consider two composable morphismsA f−→ B
g−→ C . Then

g ◦ f = 0 iff Im f ⊆ ker g, viewed as subobjects ofB.

Lemma 5.6. Let C be an abelian category. Consider two composable morphismsA f−→ B
g−→ C . Then

ker g ⊆ Im f , viewed as subobjects of B, iff ∀h : D → B s.t. g ◦ h = 0, ∃ !h′ : D → Im f s.t.
µ ◦ h′ = h, where Im f

µ−→ B is the natural morphism. In other words s.t. the following diagram
commutes

A B

Im f D

f

β µ h

∃ !h′

. (5.4)

Definition 5.7: Exact sequence.
Let C be an abelian category. Consider a sequence of composable morphisms in C

. . .→ An
fn−→ An+1

fn+1−−−→ An+2
fn+2−−−→ . . . . (5.5)

The sequence is exact at n iff Im fn = ker fn+1 as subobjects ofAn+1. It is said to be exact iff it
is exact at n for every n.
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Definition 5.8: Short exact sequence.
An exact sequence of the form

0→ A1
f1−→ A2

f2−→ A3 → 0 (5.6)

is called short exact sequence. In particular this sequence is exact iff f1 is a mono, f2 is an epi, and
Im f1 = ker f2.

Lemma 5.9. Consider the following exact sequence

0→ A
f−→ B

g−→ C. (5.7)

Then f = ker g.

Lemma 5.10. Consider the following exact sequence

A
f−→ B

g−→ C → 0. (5.8)

Then g = coker f .

Let’s combine the above lemmas

Proposition 5.11. Consider the following sequence

0→ A
f−→ B

g−→ C → 0. (5.9)

This is exact (i.e. a s.e.q.) iff f = ker g and g = coker f .

5.2 Functors
In this section we’ll always work with abelian categories C andD.

Definition 5.12: Exact functor.
Let F : C→ D be an additive functor. We say that F is exact iff, for every exact sequence

A
f−→ B

g−→ C in C, (5.10)

then the image sequence is exact inD

F (A)
F (f)−−−→ F (B)

F (g)−−−→ F (C). (5.11)

Equivalently F is exact if given Im f = ker g in C, then ImF (f) = kerF (g) inD.

Definition 5.13: Left (resp. right) exact functor.
An additive functor F : C→ D is left (resp. right) exact iff, for every exact sequence in C

0→ A
f−→ B

g−→ C (resp. A f−→ B
g−→ C → 0 ), (5.12)

then the image sequence is exact inD

0→ F (A)
F (f)−−−→ F (B)

F (g)−−−→ F (C) (resp. F (A) F (f)−−−→ F (B)
F (g)−−−→ F (C)→ 0 ). (5.13)

Proposition 5.14. An additive functor F : C → D between abelian categories, is exact iff it is both
left and right exact.
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Definition 5.15: Split exact sequence.
A short exact sequence in C (as usual an abelian category)

0→ A
f−→ B

g−→ C → 0 (5.14)

is said split exact iff ∃α : B → A⊕ C s.t. the following diagram is commutative

0 A B C 0

0 A A⊕ C C 0

f g

α

ϵA πC

. (5.15)

Recall that, in matrix notation, the embedding and projection can be written as

ϵA =

[
1A
0

]
and πC =

[
0 1c

]
. (5.16)

Proposition 5.16. Let C be an abelian category. TFAE

1. The sequence 0→ A
f−→ B

g−→ C → 0 is split exact,

2. ∃ f ′ : B → A s.t. f ′ ◦ f = 1A,

3. ∃ g′ : C → B s.t. g ◦ g′ = 1B .

In such a case f ′ is called a section of f , and g′ a retraction of g.

Some examples

Recall that, given a category C, we have the natural bifunctor

F = HomC (−,−) : Cop × C→ Sets. (5.17)

Clearly, if C is preadditive, F is an additive functor. Moreover

Proposition 5.17. Let C be an abelian category, then

HomC (−,−) : Cop × C→ Ab (5.18)

is left exact in both variables.

Remark5.18 Recall that a contravariant functorF : C→ D, i.e. a covariant functorF : Cop →
D, is left exact iff given any exact sequence in C

A→ B → C → 0, (5.19)

i.e. 0→ C → B → A exact in Cop, then the image sequence is exact inD

0→ F (A)→ F (B)→ F (C). (5.20)

Remark 5.19 Consider C = Mod-R and (I,≤) a filtered poset, then the functors F : I →
Mod-R are in correspondence with the directed systems of modules {Mi, fji}i≤j . Consider the
functorsF,G,L ∈ CI and their corresponding directed systems {Mi, fji}i≤j , {Ni, gji}i≤j and
{Li, lji}i≤j . Then the sequence

0→ F
η−→ G

ζ−→ L→ 0 (5.21)
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is exact iff the following diagram is commutative and has exact rows

0 Mi Ni Li 0

0 Mi Ni Li 0

ηi

fji

ζi

gji lji

ηj ζj

, (5.22)

for each i ≤ j in I.

Proposition 5.20. LetC = Mod-R and (I,≤) be a filtered poset. Then the functor lim−→ : Mod-RI →
Mod-R is exact.

Remark 5.21 Colimits, in general, are not exact, even in Mod-Z = Ab. Consider, in fact,
the category I, characterized by Ob (I) := {1, 2, 3} and nontrivial arrows 1 → 2 and 1 → 2.
Consider F,G,H ∈ AbI, defined by:

F :

Z Z

Z

4̇

0 G :

Z Z

Z

4̇

0 H :

Z/2Z Z/2Z

Z/2Z

0

0 . (5.23)

Then lim−→F = coker 4̇ = lim−→G and lim−→H ≃ Z/2Z. (Indeed these are just cokernels of the
horizontal maps). Consider the natural transformation 2̇ and π, that give rise to the sequence

0 F G H 02̇ π , (5.24)

which is exact inMod-ZI. In fact this corresponds to

0 Z Z Z/2Z 0

0 Z Z Z/2Z 0

2̇

4̇

π

4̇ 0

2̇ π

(5.25)

0 Z Z Z/2Z 0

0 Z Z Z/2Z 0

2̇

0

π

0 0

2̇ π

. (5.26)

And both are commutative with exact rows. Taking the image by lim−→ we obtain

0 lim−→F ≃ Z/4Z lim−→G ≃ Z/4Z lim−→H ≃ Z/2Z 02̇ π (5.27)

which is not exact, since 2̇ : Z/4Z→ Z/4Z is not injective.

Proposition5.22. LetC := Mod-R and (I,≤) be a filtered poset. Then the functor lim←− : Mod-RI →
Mod-R is left exact.

Example In general, even in the categoryMod-Z = Ab, the functor lim←− is not exact. It is enough
to construct an epimorphism

{Mi, fji}i≤j
ζ−→ {Ni, gji}i≤j → 0 (5.28)
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s.t. the induced lim←− ζ : lim←−Mi → lim←−Ni is not epi.Let I = N, with the usual order. Let Mn = Z for every n, with structural morphisms
Mm

3m−n

−−−−→ Mn, that acts as x 7→ x · 3m−n, for allm ≤ n, for all x ∈ Z. LetNn = Z/2Z for
every n, with structural morphisms id : Z/2Z→ Z/2Z. We define{

Mn, 3
m−n}

m≤n
π−→ {Z/2Z, id}m≤n , (5.29)

defined for all n as the canonical projection. It clearly is both surjective for all n, and (as can be
easily checked) it is a natural transformation, hence it is an epi in the category of functors. Notice
that, given (xn)n∈N ∈ lim←−Mn, then x1 = 3 ·x2 = . . . = 3nxn+1, hence x1 ∈

⋂
n∈N 3nZ = ∅.

In other words lim←−Mn = ∅. Instead, clearly, lim←−Nn = Z/2Z. Then, obviously, lim←−π cannot be
surjective.

6 Injective and projective objects
Let C be an arbitrary category.

Definition 6.1: Projective object.
Let P ∈ Ob (C). P is projective iff given any φ : B → C epimorphism in C, and any morphism
f : P → C , then there exists g : P → B s.t. φ ◦ g = f , i.e. s.t. the following diagram commutes

B C 0

P

φ

∃ g
f . (6.1)

In such case g is called a lift of f .
Equivalently: P is projective iff

HomC (P,B)
HomC(P,φ)−−−−−−−→ HomC (P,C) (6.2)

is an epimorphism (a surjection in Sets) for every φ epi.

Remark 6.2 If, moreover, C is abelian, then P is projective iff HomC (P,−) is exact. Hence P
is projective iffHomC (P,−) is also right exact.

Definition 6.3: Injective object.
Let I ∈ Ob (C). I is injective iff I is projective in Cop. More explicitly, iff given any µ : A → B
mono in C, and any morphism f : A→ I , then there exists g : B → I s.t. g ◦ µ = f , i.e. s.t. the
following diagram commutes

0 A B

I

µ

f
∃ g

. (6.3)

In such case g is called an extension of f .
Equivalently: I is injective iff

HomC (B, I)
HomC(µ,I)−−−−−−−→ HomC (A, I) (6.4)

is an epimorphism (a surjection in Sets) for every µmono.
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Remark 6.4 If, moreover, C is abelian, then I is injective iff HomC (−, I) is exact. Hence I is
injective iffHomC (−, I) is also right exact.

Proposition 6.5. Consider {Pi}i∈I a family of objects in C an arbitrary category. Assume that∐
i∈I Pi exists. Then

∐
i∈I Pi is a projective object in C iff Pi is projective ∀ i ∈ I .

Dually we have the following

Proposition 6.6. Consider {Iλ}λ∈Λ a family of objects in C an arbitrary category. Assume that∏
λ∈Λ Iλ exists. Then

∏
λ∈Λ Iλ is an injective object in C iff Iλ is injective ∀λ ∈ Λ.

Proposition 6.7 (Baer’s criterion for injectivity). Let C = Mod-R. ER ∈ Mod-R is an injective
module iff for any ideal IR ◁R and every f : I → E, there exists g : R→ E s.t. the following diagram
commutes

IR R

E

µ

f
∃ g

, (6.5)

where µ : IR → R is the inclusion. In other words we ask g ◦ µ = f .

Definition 6.8: Enough projectives/injectives.
Consider a category C.

• We say that C has enough projectives iff, given any C ∈ Ob (C), there exists a projective
object P ∈ Ob (C) and an epimorphism φ : P → C .

• We say thatC has enough injectives iff, given any objectC ∈ Ob (C), there exists an injective
objectE ∈ Ob (C) and a monomorphism µ : C → E.

Definition 6.9: Free module.
Let C := Mod-R.MR ∈ Mod-R is free iff it has a free set of generators {xi}i∈I , with xi ∈ M
for all i, s.t. ∀x ∈M it can be written in a unique way as a linear combination of the generators.
More explicitly

x =
∑
i∈I

xiri with ri almost all zero. (6.6)

ClearlyM is free iffM =
⊕

i∈I Ri (clearly interpreting the direct sum as a coproduct in the
infinite case), with Ri ≃ R for all i. In such case it has {ei}i∈I as a basis. Another notation for⊕

i∈I Ri isR(I).

Remark 6.10 It is easy to show that any free module is projective.

Proposition 6.11. Let C = Mod-R. PR ∈ Mod-R is projective iff it is a direct summand of a free
module.

Remark 6.12 Projective modules are easy to describe. For injective ones we are able to do so
only for a specific class of rings, for example for PIDs.

For this purpose, recall that a moduleMR is divisible iff

∀x ∈M, ∀ 0 ̸= r ∈ R, ∃ y ∈M s.t. x = yr. (6.7)

Proposition 6.13. Let R be a PID, consider the category C := Mod-R. ER ∈ Mod-R is injective
iff it is divisible.
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Proof. It seems tome that any injectivemodule is also divisible as soon asxR ≃ R for anyx ∈ R,
i.e. I guess for integral domains (Baer’s lemma still holds and we can check it on every principal
ideal). The converse, however, requires that all ideals are principal. ■

Example: category with no nonzero projective objects. Let C := T the full subcategory of
Ab of torsion abelian groups. Then T has enough injectives, but no nonzero projective objects.

• Notice that T ⊂ Ab = Mod-Z, and Z is a PID. Then a torsion group is injective iff it is
divisible.
Consider an arbitrary T ∈ Ob (T). Then T has a set of generators {xi}i∈I , each of order
o(xi) = ni ∈ N. Then we have an epimorphism

φ :
⊕
i∈I

Z/niZ ↠ T. (6.8)

Then an injective element I ∈ T containing T is⊕
i∈I

Q/niZ, (6.9)

which is divisible, hence injective, and contains⊕
i∈I

Z/niZ. (6.10)

Finally we have an injection, given by the inclusion, which states thatT has enough inject-
ives: ⊕

i∈I Z/niZ
kerφ

↪→
⊕

i∈I Q/niZ
kerφ

. (6.11)

• There is a well-known fact saying that a subgroup of a direct sum of cyclic abelian groups
is a direct sum of cyclic abelian groups.
Consider 0 ̸= T ∈ Ob (T), and assume it is projective. Then, for {xi}i∈I the generators
of T , as above, ⊕

i∈I Z/niZ T 0

T

φ

ψ

1T . (6.12)

Then T is a subgroup of a direct sum of cyclic groups (1T is injective, hence so has to be
ψ). By the above remark

T ≃
⊕
j∈J

Z/mjZ. (6.13)

Since T ̸= 0, then there existsm0 s.t. Z/m0Z ̸= 0, and it is a projective object, since it is
a direct summand of a projective object. Let’s now consider the epimorphism

Z/m2
0Z ↠ Z/m0Z. (6.14)

Reasoning as before we obtain that Z/m0Z is a direct summand of Z/m2
0Z, which is a

contradiction.
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6.1 Functor categories
Remark 6.14 Let I be a small and preadditive category. Let C be an abelian category. Define
Hom (I,C) ⊂ CI the subcategory of all additive functors F : I→ C. In this situationHom (I,C)
is abelian.

Lemma 6.15 (Yoneda). Let I be as above. Let C := Ab. FixX ∈ Ob (I) and F ∈ Hom (Iop,Ab).
There is an isomorphism

Nat
(
hX , F

) θX,F−−−→ F (X), (6.15)

natural inX and in F . Recall that hX := HomI (−, X).

Remark 6.16: An application of Yoneda lemma.
ConsiderX,X ′ ∈ Ob (I). Let F := hX

′ , then Yoneda lemma implies

Nat
(
hX , hX

′
)
≃ hX

′
(X) = HomI (X,X

′) . (6.16)

Definition 6.17: Yoneda embedding.
Consider I small and preadditive,C = Ab. We define the Yoneda embedding as the functor Y : I→
Hom (Iop,Ab), defined on objects as

Y : I→ Hom(Iop,Ab) (6.17)

X 7→ hX (6.18)

and on morphisms, given f : X → X ′, by

Y (f) := HomI (−, f) : hX → hX
′
. (6.19)

Proposition 6.18. The Yoneda embedding Y is fully faithful. Moreover it sends distinct objects of I to
distinct objects ofHom(Iop,Ab).

Corollary 6.19. Consider a small preadditive category I. Then I is equivalent to the full subcategory of
Hom(Iop,Ab) consisting of the representable functors.

Proposition 6.20. For I as before (small and preadditive) and X ∈ Ob (I), then hX is a projective
object ofHom(Iop,Ab).

Definition 6.21: Generator of a category.
Let C be a category. An object G ∈ Ob (C) is a generator of C iff HomC (G,−) : C → Sets is
faithful. In other words iff the maps of sets

HomC (C,D)→ HomSets (HomC (G,C) ,HomC (G,D)) (6.20)

is injective for everyC,D ∈ Ob (C).

Remark 6.22: Equivalent definition.
G is a generator, iff for every pair f, g : C → D s.t. HomC (G, f) = HomC (G, g), i.e. g ◦ α =
f ◦ α for all α : G→ C , then f = g.

In the case of a preadditive category C, thenG is a generator iff for all morphisms f in C s.t.
HomC (G, f) = 0, i.e. s.t. f ◦ α = 0 (whenever admissible), then f = 0.

Definition 6.23: Alternative notation for (co)products.
FixX ∈ Ob (C) and I a set.
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• If
∏
i∈I Xi, withXi := X for all i ∈ I , exists we define the notation

XI :=
∏
i∈I

Xi. (6.21)

• If
∐
i∈I Xi, withXi := X for all i ∈ I , exists we define the notation

X(I) :=
∐
i∈I

Xi. (6.22)

Proposition 6.24. Assume that C has arbitrary coproducts. TFAE

1. G is a generator of C,

2. ∀X ∈ Ob (C), there is an epimorphismG(I) ↠ X , for some set I .

Definition 6.25: Cogenerator of a category.
Let C be a category. An objectC ∈ Ob (C) is a cogenerator of C iffC is a generator in Cop, i.e. iff
HomC (−, C) : Cop → Sets is faithful. In other words iff the maps of sets

HomC (A,B)→ HomSets (HomC (B,C) ,HomC (A,C)) (6.23)

is injective for everyA,B ∈ Ob (C).

Remark 6.26: Equivalent definition.
C is a cogenerator, iff for every pair f, g : A→ B s.t. HomC (f, C) = HomC (g, C), i.e. α◦f =
α ◦ g for all α : B → C , then f = g.

In the case of a preadditive category C, then C is a generator iff for all morphisms f in C s.t.
HomC (f, C) = 0, i.e. s.t. α ◦ f = 0 (whenever admissible), then f = 0.

Proposition 6.27. Assume that C has arbitrary products. TFAE

1. C is a cogenerator of C,

2. ∀X ∈ Ob (C), there is a monomorphism µ : X ↣ CI , for some set I .

Example Let C := Mod-R. R is a generator ofMod-R: given a moduleMR, and {xi}i∈I a set
of generators forM , then

R(I) =
⊕
i∈I

Ri
ϕ−→M → 0, (6.24)

in which ϕ(ei) := xi. MoreoverR is projective, hence it is a projective generator.

Remark 6.28: A not-so-easy-to-prove fact about modules.
Let C := Mod-R. Every moduleM can be embedded in an injective module (i.e. Mod-R has
enough injectives). Moreover every module M admits an injective envelope, denoted E(M),
where the envelope is a minimal injective module containingM .

Example Let C := Mod-R as before. Let S be the set of simple modules S ∈ Mod-R (i.e.
modules with no proper submodules). Recall that S ∈ S iff S ≃ R/mR, for some maximal ideal
mR ◁ R. Given S ∈ S , consider its injective envelopeE(S), and finally let’s define

C :=
∏
S∈S

E(S) ≃
∏

mR∈MaxR

E (R/mR) ∈ Ob (C) . (6.25)
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Then C is an injective cogenerator of Mod-R. In fact, consider 0 ̸= XR ∈ Mod-R, and 0 ̸=
x ∈ XR. Then ⟨x⟩ ≃ R/I , for I = {r ∈ R | xr = 0} ◁R. Consider any maximal idealmR ◁R
s.t. I ⊂ mR, then, sinceE(R/mR) is injective, we have the commutative diagram

0 ⟨x⟩ X

R/mR

E(R/mR)

π

∃ fx ̸=0
. (6.26)

Then, for every 0 ̸= x ∈ X , we have the map

0 ̸= fx : X → E (R/mR) ↪→
∏

mR∈MaxR

E (R/mR) =: C. (6.27)

Then, by the universal property of products, viewingX as a set,

∃ ! f : X ↪→ CX (6.28)

induced by the various fx. Moreover this f is mono, since fx(x) ̸= 0 for any 0 ̸= x.

Remark 6.29 Notice that, if C has a projective generator, then C has enough projectives. Ana-
logously, if C has an injective cogenerator, then C has enough injectives.

6.2 Grothendieck categories
Definition 6.30: Grothendieck category.
An abelian categoryC is aGrothendieck category iff it is cocomplete, it has a generator, and filtered
direct limits are exact in C.

Remark 6.31: Important fact.
A Grothendieck category has injective envelopes, in particular injective cogenerators. Though it
might have no nonzero projective objects.

Example

• Mod-R andR-Mod are both Grothendieck categories.

• The category of coherent sheaves is Grothendieck, but has no nonzero projective objects.

• It can be shown that also the category of torsion abelian groups is Grothendieck.

7 Adjoint functors
Let’s introduce this topic with an example

Example Let K be a field, and C := Vect-K the category of K-Vector Spaces. Clearly we can
define the forgetful functor, which acts on objects as

For: Vect-K→ Sets (7.1)
VK 7→ V, (7.2)
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forgetting about the structure of Vector Space. For a setX , moreover, we can construct the Vector
Space ⟨X⟩, which is the Vector Space for whichX is a basis. This induces a functor

Sets→ Vect-K (7.3)
X 7→ ⟨X⟩ =: V. (7.4)

Recall that, fixedX ∈ Ob (Sets), andW ∈ Ob (Vect−K), for every map α : X → forW , we
can construct a unique linear map f : ⟨X⟩ →W s.t. the diagram commutes

X W

⟨X⟩

α

i
∃ ! f

(7.5)

i.e. s.t. f(x) = α(x) ∀x ∈ X . In particular we have a bijection

HomSets (X,ForW ) HomK (⟨X⟩K ,WK) . (7.6)

Definition 7.1: Adjoint pair of functors.
Let C and D be two categories. Consider two functors L : C → D and R : D → C. The pair
(L,R) is called an adjoint pair iff there is

HomD (L(C), D) HomC (C,R(D))
φ(C,D) (7.7)

a bijection natural in C andD. In particular L is the left adjoint of R and R is the right adjoint
of L. An adjoint pair is sometimes referred to as an adjunction, and denoted by

C D
L

R
or L : C D : R. (7.8)

Remark 7.2 In the above remark, the pair (⟨−⟩ ,For ) is an adjoint pair.

Remark 7.3 Naturality of φ in C andD, more explicitly, means that, for all f : C → C ′ and
all g : D → D′, the following diagrams commute

C HomD (L(C), D) HomC (C,R(D))

C ′ HomD (L(C ′), D) HomC (C
′, R(D))

f

φ(C,D)

φ(C′,D)

HomD(L(f),D) HomC(f,R(D)) . (7.9)

D HomD (L(C), D) HomC (C,R(D))

D′ HomD (L(C), D′) HomC (C,R(D
′))

g

φ(C,D)

HomD(L(C),g) HomC(C,R(g))

φ(C,D′)

. (7.10)

Definition 7.4: (Co)unit of an adjunction.
Let C and D be two categories. Let L : C → D and R : D → C be functors s.t. (L,R) is an
adjoint pair. We define
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• The unit of the adjunction, the natural transformation

η : idC → R ◦ L (7.11)

defined, for everyC ∈ Ob (C), by

ηC := φ(C,L(C)) (1LC) ∈ HomC (C,RL(C)) . (7.12)

• The counit of the adjunction, the natural transformation

ζ : L ◦R→ idD (7.13)

defined, for everyD ∈ Ob (D), by

ζD := φ−1
(R(D),D) (1RD) ∈ HomC (LR(D), D) . (7.14)

Remark 7.5 It is not obvious from the definition that the family of morphisms given by the
unit and counit are natural transformation, but they are. Moreover I find it useful to visualize
the following diagram to remember how to construct unit and counit of an adjunction (to be read
from left to right):

C

D

C

D.

L

idC

idD

R

L

(7.15)

Proposition 7.6. Given two right adjoints, R and R′, of the same functor L, then R and R′ are
naturally isomorphic. Analogously, given two left adjoints, L and L′, of the same functorR, then L and
L′ are naturally isomorphic.

Proposition 7.7. Let F : C→ D andR : D→ C be a pair of functors. TFAE

• (L,R) is an adjoint pair,

• there exist natural transformations

η : idC → R ◦ L and ζ : L ◦R→ idD (7.16)

such that

ζL(C) ◦ L(ηC) = idL(C) ∀C ∈ Ob (C) (7.17)
R(ζD) ◦ ηR(D) = idR(D) ∀D ∈ Ob (D) . (7.18)

In such case η is the unit, and ζ the counit, of the adjunction.

Remark 7.8 Let (L,R), withL : C→ D andR : D→ C, be an adjoint pair. Given an arbitrary
morphism β : C → RD, withC ∈ Ob (C) andD ∈ Ob (D). Letα : L(C)→ D the morphism
s.t. φ(C,D) = β. Then there exists a commutative triangle, i.e. that β = R(α) ◦ ηC

C R(D)

RL(C)

β

ηC
R(α)

. (7.19)

47



Remark 7.9 Let (L,R), with L : C→ D andR : D→ C, be an adjoint pair. TFAE:

1. R is faithful,

2. R reflects epimorphisms, i.e. ifRf is an epi in C, then f is epi inD,

3. given β : C → R(D) epi, then α := φ−1(C,D)(β) is epi,

4. ζD : LR(D)→ D is epi for everyD ∈ D.

Remark 7.10 Given the definitions in the preliminaries, fix two rings S and R, and an R-S
bimodule SMR, we can construct the functors (acting on objects as)

−⊗S M : Mod-S → Mod-R (7.20)
NS 7→ [N ⊗S MR]R , (7.21)

HomR (MR,−) : Mod-R→ Mod-S (7.22)
LR 7→ [HomR (SMR, LR)]S . (7.23)

Proposition 7.11. The pair (−⊗S MR,HomR (MR,−)) is an adjoint pair. Moreover also the
pair (MR ⊗R −,HomS (SM,−)) is an adjoint pair. Notice that, if the above functors are between
categories of right modules, these are between categories of left modules.

Example Let ϕ : R→ S be a ring homomorphism. Then any SN ∈ S-Mod becomes also a left
R-module via

r · x := ϕ(r) · x ∀x ∈ N, ∀ r ∈ R. (7.24)

And analogously for any right module NS ∈ Mod-S. In particular S becomes both a left and
rightR-module via ϕ. We can then define the following functors:

−⊗R S : Mod-R→ Mod-S (7.25)
MR 7→M ⊗R S (7.26)

called extension of scalars. And also the restriction functor

ϕ∗ : Mod-S → Mod-S (7.27)
NS 7→ NR. (7.28)

Then the pair (−⊗R S, ϕ∗) is an adjoint pair.
Analogously we can define the functor

HomR (SR,−) : Mod-R→ Mod-S (7.29)
MR 7→ [HomR (SSR,MR)]S , (7.30)

and the pair (ϕ∗,HomR (SR,−)) is an adjoint pair.

Proposition 7.12. Let C and D be arbitrary categories. Let (L,R) be a pair of adjoint functors,
L : C→ D andR : D→ C. Then

1. L preserves colimts, and in particular coproducts, pushouts and cokernels, when they exist,

2. R preserves limts, and in particular products, pullbacks and kernels, when they exist.
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Example If C := R-Mod and D := S-Mod, then (M ⊗R −,HomS (M,−)), for SMR, is an
adjoint pair. ThenM ⊗R − preserves colimits. In fact, given a direct system {Ni, fji}i,j∈Ob(I),
for some small category I, then

M ⊗R lim−→
i

Ni ≃ lim−→
i

(M ⊗R Ni) . (7.31)

AnalogouslyHomS (SM,−) preserves limits. Then, given an inverse system {Li, fij}i,j∈Ob(I)

for some small category I, then

HomS

(
SM, lim←−

i

Li
)
≃ lim←−

i

HomS (SM,Li) . (7.32)

Remark 7.13: Application of the proposition.
Let C and D be abelian categories. Let (L,R) be an adjoint pair, L : C → D and R : D → C.
Then L is right exact, and L is left exact.

Proposition 7.14. Let I be a small category, and C be a cocomplete category. Then the colimit functor

lim−→ : CI → C (7.33)

is a left adjoint. If, moreover, C is abelian, lim−→ is also right exact.
Dually, ifC is complete, then lim←− is a right adjoint. Again, ifC is abelian, then lim←− is also left exaxct.
More explicitly, denoting by∆: C→ CI the diagonal functors, we have the following adjoint pairs:(

lim−→,∆
)

and
(
∆, lim←−

)
.

8 Chain and cochain complexes
Let, in the following, A be a preadditive category with 0.

Definition 8.1: Chain complex over A.
We define Ch(A) the category of chain complexes over A as the category whose objects are se-
quences

. . .→ Xn
dn−→ Xn−1

dn−1−−−→ Xn−2 → . . . (8.1)
s.t. Xi ∈ Ob (A), di ◦ di+1 = 0 for all i ∈ Z. The morphisms di are called differentials and the
sequence is called complex, denoted by

(
X•, d

X
)
, with

(
dX

)2
= 0.

Morphisms in Ch(A), denoted by f :
(
X•, d

X
)
→

(
Y•, d

Y
)
, are a family of morphisms

{fn}n∈Z, where fn ∈ HomA (Xn, Yn), making the following diagram commute

. . . Xn Xn−1 Xn−2 . . .

. . . Yn Yn−1 Yn−2 . . .

dXn

fn

dXn−1

fn−1 fn−2

dYn dYn−1

, (8.2)

i.e. such that dYn ◦ fN = fn−1 ◦ dXn for all n ∈ Z (more compactly dY ◦ f = f ◦ dX ).

Definition 8.2: Cochain complex overA.
We define Cch(A) the category of cochain complexes over A as the category whose objects are
sequences

. . .→ Xn dn−→ Xn+1 dn+1

−−−→ Xn+2 → . . . (8.3)
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s.t. Xi ∈ Ob (A), di ◦ di−1 = 0 for all i ∈ Z. The morphisms di are called differentials and the
sequence is called complex, denoted by (X•, dX), with (dX)

2
= 0.

Morphisms in Cch(A), denoted by f : (X•, dX) → (Y •, dY ) are a family of morphisms
{fn}n∈Z, where fn ∈ HomA (X

n, Y n), making the following diagram commute

. . . Xn Xn+1 Xn+2 . . .

. . . Y n Y n+1 Y n+2 . . .

dnX

fn

dn+1
X

fn+1 fn+2

dnY dn+1
Y

, (8.4)

i.e. such that fn ◦ dn−1
X = dn−1

Y ◦ fn−1 for all n ∈ Z (more compactly f ◦ dX = dY ◦ f ).

Remark 8.3: Additive categories.
If A is additive, then also Ch(A) and Cch(A) are. In particular, given (X•, dX) and (Y •, dY )
two cochain complexes, then their coproduct (X• ⊕ Y •, dX ⊕ dY ) is given, degree wise, by

[X• ⊕ Y •]
n := Xn ⊕ Y n. (8.5)

Analogously, degree wise, its differentials are defined by

dnX•⊕Y • := dnX ⊕ dnY =

[
dnX 0
0 dnY

]
. (8.6)

Definition 8.4: Bounded (co)chain complex.
A (co)chain complex (X•, dX) is bounded iff ∃ b ∈ N s.t. Xn = 0 for all |n| > b. It is bounded
below, resp. above, iff ∃ b ∈ Z s.t. Xn = 0 for all n < b, resp. n > b. (Even though we used the
notation for cochain complexes the definitions apply without modification to chain complexes).

We denote respectively withCh(A)b,Ch(A)+ andCh(A)− the full subcategory of bounded,
resp. above or below, chain complexes.

Definition 8.5: Canonical functor.
There is a canonical embedding

can: A→ Ch(A) (8.7)
A 7→ A• :=

[
. . .→ 0→ (A0 := A)→ 0→ . . .

]
. (8.8)

A• is called complex concentrated in degree 0. Clearly can is fully faithful, hence it is an embed-
ding of A intoCh(A).

Definition 8.6: Shift functor.
Choose p ∈ Z, then we can define the functor

[p] : Ch(A)→ Ch(A) (8.9)
(X•, dX) 7→ (X•[p], dX [p]) , (8.10)

in which we define

(X•[p])
n := Xn+p and dnX•[p] := (−1)pdn+pX . (8.11)

More explicitly this functor shifts the objects in the (co)chain, by p to the left. Analogously it acts
on a morphism of complexes f :

(
X•, d

X
)
→

(
Y•, d

Y
)
by shifting the morphisms of the family

by p to the left. More explicitly
([p]f)

n := fn+p. (8.12)
Moreover we introduce the notation f [p] := [p]f .
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Remark 8.7: Shift functor.
The above is called the shift functor if p = 1:

[1] : Ch(A)→ Ch(A). (8.13)

Remark 8.8 The functor [p] : Ch(A) → Ch(A) is an automorphism of categories. In fact
[p] ◦ [−p] = idCh(A) = [−p] ◦ [p].

Remark 8.9: Motivational remark.
From algebraic topology. We define ∆n the standard n-simplex. Given a topological space X
one wants to partition it into finitely many n-simplices. One can construct a chain (the simplicial
chain complex) by consideringXk , for every k ∈ N, the set of k-dimensional simplices appearing
in the partition ofX . Then one can create for each degree k the free abelian group generated by
Xk , we denote it by (C•)k . One also defines a differential dk : Ck → Ck−1, which gives rise to
a chain complex.
Proposition 8.10. Given an abelian categoryA, thenCh(A) is abelian, i.e. it admits kernels, cokernles
and Coim is canonically isomorphic to Im .

Example Let’s, for example, define the kernel of a morphism

f : (X•, dX)→ (Y •, dY ) . (8.14)

Then, we denote byK• := ker f the cochain s.t.Kn := ker fn and with differential defined by:

Xn Xn+1

ker fn ker fn+1

Y n Y n+1

dnX

fn fn+1

ϵn

∃ !dn ϵn+1

dnY

. (8.15)

By the commutativity of the diagram we obtain

fn+1 ◦ dnX ◦ ϵn = dnY ◦ fn ◦ ϵn = 0. (8.16)

Then, by the second condition on kernels, we obtain ∃ ! dn : ker fn → ker fn+1 s.t. dnX ◦ ϵn =
ϵn+1 ◦ dn.

Definition 8.11: Cohomology.
LetA be an abelian category, and (X•, dX) ∈ Ch(A). Then, since dnX ◦ d

n−1
X = 0, as subobjects

we have Im dn−1
X ⊂ ker dnX . Hence we can define, for all n ∈ Z, the following quotient object

Hn(X) :=
ker dnX
Im dn−1

X

∈ Ob (A) , (8.17)

called the n-th cohomology of the cochain complex (X•, dX).

Example Let A = Ab the category of abelian groups. Consider the following cochain

. . .→ 0→ Z/4Z 2̇−→ Z/4Z 2̇−→ Z/4Z 2̇−→ . . . =: (X•, dX) . (8.18)

ThenH0(X) = 2Z/4Z ≃ Z/2Z, whereasHn(X) = 0 for all n ̸= 0. If, instead, we considered
the following object

. . .→ Z/4Z 2̇−→ Z/4Z 2̇−→ Z/4Z 2̇−→ . . . =: (X•, dX) . (8.19)

ThenHn(X) = 0 for all n ∈ Z and we say that (X•, dX) is acyclic.
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Proposition 8.12. Let A be an abelian category, then, for every n ∈ Z, we can define

Hn : Ch(A)→ A (8.20)
(X•, dX) 7→ Hn(X). (8.21)

In particular this is an additive functor.

Proof. We need to construct, starting from a cochain map f : X• → Y •, the associated cohomo-
logy morphism

Hn(f) : Hn(X)→ Hn(Y ). (8.22)
■

Remark 8.13 If A := Mod-R, then every part of the above result can be checked by diagram
chasing. In fact z ∈ ker dnX ⇐⇒ dnX(z) = 0, then

dnY ◦ fn(z) = fn+1 ◦ dnX(z) = 0, (8.23)

hence fn(ker dnX) ⊂ ker dnY . Moreover, given x ∈ Im dn−1
X , then x = dn−1

X (z), for some
z ∈ Xn−1. Then

fn(x) = fn ◦ dn−1
X (z) = dn−1

Y ◦ fn−1(z) ∈ Im dn−1
Y . (8.24)

Hence fn(Im dn−1
X ) ⊂ Im dn−1

Y . The f induces a map on the quotient

f̃ :
ker dnX
Im dn−1

X

→ ker dnY
Im dn−1

Y

. (8.25)

And now, a very important result!

Theorem 8.14 (Freyd-Mitchell embedding). Let A be a small, abelian category. Then there is a ring
R and a fully faithful exact functor

F : A→ Mod-R. (8.26)

Remark 8.15 The above theorem essentially states that we can consider objects of A as if they
weremodules. In particular any result inMod-R involving only finitelymany objects andmorph-
isms (such as exactness, existence and vanishing of morphisms) holds in any abelian category C.
This is true, since we can always construct a small full subcategory A0 of C, containing only the
objects and morphism involved in the result (and, by a remark which will follow, an exact and
fully faithful functor reflects exactness).

Notice, however, that results for arbitrary family of objects do not translate so easily. For
example the product of an arbitrary family of exact sequences inMod-R is still exact inMod-R,
but not in an arbitrary abelian category.

Sketch of proof (Freyd-Mitchell). LetHom(Aop,Ab) be the category of the additive functors from
Aop to Ab. Then, by Yoneda lemma, the Yoneda embedding

Y : A→ Hom(Aop,Ab) (8.27)

A 7→ hA = HomA (−, A) (8.28)

is fully faithful. Moreover it is left exact, since, for everyA the functor hA is left exact. In fact

Y : A→ L := Lex (Aop,Ab) ⊂ Hom(Aop,Ab) (8.29)

takes values in the category Lex (Aop,Ab) of left exact functors from Aop to Ab. We need some
facts about L (which are not trivial to show):
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1. L is an abelian category. In particular its kernels coincide with the ones inHom (Aop,Ab),
whereas cokernels differ. This implies that the inclusion functor L ↪→ Hom(Aop,Ab) is
only left exact.

2. The Yoneda embedding Y : A→ L is fully faithful and exact.

3. L has arbitrary coproducts, i.e. L is cocomplete, and has a projective generator, which is
faithful as a functor, namely

P :=
∐

A∈Ob(A)

hA. (8.30)

Recall that we can take this coproduct since A is a small category, henceOb (A) is a set.

Summarizing: A is a small abelian full subcategory of L, which is a cocomplete abelian category
with a projective generator. Then Freyd-Mitchell follows from the following theorem. ■

Theorem 8.16. Let C be a cocomplete abelian category with a projective generator. Then, for every
small full abelian category A ⊂ C, there is a ringR and a fully faithful exact functor

F : A→ Mod-R, (8.31)

so that A is equivalent to a full subcategory ofMod-R.

Definition 8.17: Functor reflecting exactness.
Let C and D be abelian categories, and F : C → D be an additive functor. We say that F reflects
exactness iff

A→ B → C (8.32)

is exact in C, as soon as
F (A)→ F (B)→ F (C) (8.33)

is exact inD.

Lemma 8.18. If F is an exact and fully faithful functor, then F reflects exactness. (you can simplify
things if you prove it using Freyd-Mitchell)

Proposition 8.19. Let A be a small abelian category. The Yoneda embedding

Y : A→ Hom(Aop,Ab) (8.34)

reflects exactness.

Definition 8.20: Acyclic complex.
A (co)chain complex (X•, dX) is acyclic iffHn(X) = 0 for all n ∈ Z, i.e. as a sequence it is exact

. . .→ Xn−1 dn−1
X−−−→ Xn dnX−−→ Xn+1 dn+1

X−−−→ Xn+2 → . . . . (8.35)

8.1 Homotopy category
Let A be an additive category, andX•, Y • ∈ Ch(A).
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Definition 8.21: Nullhomotopic morphism.
A morphism f ∈ HomCh(A) (X

•, Y •) is nullhomotopic, or homotopic to zero, iff there exists a
family of morphism {sn}n∈N, with sn : Xn → Y n−1, in pictures

. . . Xn−1 Xn Xn+1 . . .

. . . Y n−1 Y n Y n+1 . . .

dn−1
X

fn−1

dnX

fnsn
fn+1sn+1

dn−1
Y

dnY

(8.36)

such that fn = sn+1◦dnX+dn−1
Y ◦sn for alln ∈ Z. More compactlywewritef = s◦dX+dY ◦s.

The morphisms sn are called homotopies or cochain contractions. Moreover, if f is nullhomotopic,
we write f ∼ 0.

Definition 8.22: Homotopic morphisms.
Two cochainmaps f, g : (X•, dX)→ (Y •, dY ) are called homotopic, denoted by f ∼ g, iff f−g
is nullhomotopic.

Remark 8.23 The relation∼ is an equivalence relation.

Definition 8.24: Homotopy category.
Given, as before, an additive category A, we define the homotopy category K(A) as follows.
Its objects are exactly the objects in Ch(A). Its morphisms, instead, are equivalence classes of
(co)chain maps, under the homotopy relation∼ we just defined. More explicitly

HomK(A) (X
•, Y •) ≃ HomCh(A) (X

•, Y •) / ∼ (8.37)
g 7→ [g]∼ . (8.38)

Remark 8.25 The homotopy relation∼ is compatible with addition, hence it is a congruence.
In particular, denoted withHomt (X

•, Y •) ⊂ HomCh(A) (X
•, Y •) the subgroup of nullhomo-

topic (co)chain maps, then

HomK(A) (X
•, Y •) =

HomCh(A) (X
•, Y •)

Homt (X•, Y •)
. (8.39)

Moreover, let f, g : X• → Y • be homotopic cochain maps. Let α : Z• → X• and β : Y • →
W • be cochain maps, then, by linearity of composition, we obtain β ◦ f ◦ α ∼ β ◦ g ◦ α.

Proposition 8.26. K(A) is an additive category, and the quotient functor, defined

q : Ch(A)→ K(A) (8.40)
X• 7→ X• (8.41)
f 7→ [f ]∼ (8.42)

is an additive functor.

Definition 8.27: Homotopy equivalence.
Acochainmapf : (X•, dX)→ (Y •, dY ) is said to be a homotopy equivalence iff∃ g : (Y •, dY )→
(X•, dX) s.t. g ◦ f ∼ 1X and f ◦ g ∼ 1Y . In other words a homotopy equivalence is an iso-
morphism inK(A).
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Proposition 8.28. Let A be an abelian category and f : (X•, dX)→ (Y •, dY ) be a nullhomotopic
cochain map. Then the induced cohomology map

Hn(f) =: fn : Hn(X)→ Hn(Y ) (8.43)

is the zero map for every n ∈ Z.

Proof. We can use Freyd-Mitchell (this proposition deals with a finite number of objects and
morphisms). Then, by definition

Hn(f)
(
x+ im dn−1

X

)
= fn(x) + im dn−1

Y . (8.44)

But fn(x) = dn−1
Y ◦ sn(x) + sn+1 ◦ dnX(x), then

Hn(f)(x) = dn−1
Y ◦ sn(x) + im dn−1

Y = 0 + im dn−1
Y . ■

Corollary 8.29. Let f and g be homotopic maps, then

Hn(f) = Hn(g) ∀n ∈ Z. (8.45)

Proof. Hn is an additive functor for each n ∈ Z. ■

Remark 8.30 In general A abelian impliesCh(A) abelian, but notK(A) abelian.

Definition 8.31: Semisimple ring.
A ring R is called semisimple iff every R-module is projective. Equivalently iff every short exact
sequence splits.

Example Any fieldK is semisimple, butZ is not. As a consequence of the following proposition,
we get thatK(Mod-Z) is not abelian.

Proposition 8.32. The following statement (and more importantly the proof) should be incorrect. Here
what should be the correct one (I’m not going to copy the proof again, though). Let A := Mod-R. If
K(A) is abelian, thenR is semisimple.

Proposition 8.33. Let A := Mod-R. IfR is not semisimple, thenK(A) is not abelian.

Proof. Assume that R is not semisimple, butK(Mod-R) is abelian. Since R is not semisimple,
then there exists a short exact sequence

0→ X
f−→ Y

π−→ Z → 0 inMod-R (8.46)

which does not split. Consider now X•, Y •, Z• as complexes concentrated in degree 0. Since
K(Mod-R) is abelian, then f := q(f) has a cokernel And, by uniqueness up to isomorphism of
the cokernel, we can assume that π is a cokernel of f inK(Mod-R).

Consider the complexCone f :

0→ X
f−→ Y → 0, (8.47)

where Y is in degree 0. Let’s define the cochain map α : Y • → Cone f defined by

. . . 0 0 Y 0 . . .

. . . 0 X Y 0 . . .

0 0 1Y 0

f

. (8.48)
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Then we claim that there exist γ, δ s.t. α = γ ◦ π and δ ◦ α = π, i.e. s.t. the following diagram
commutes.

X• Y • Z•

Cone f

f π

α
γ δ . (8.49)

At first we notice that α ◦ f = 0 inK(Mod-R), in fact:

0 X 0

0 Y 0

0 X Y 0

f1X

01Y

f

. (8.50)

Since π is a cokernel of f , then ∃ ! γ : Z• → Cone f s.t. γ ◦π = α. With regard to δ : Cone f →
Z•, instead, we define (0, π), i.e. the family of maps which all correspond to zero, apart from
degree 0, in which it is π. Then δ ◦ α = π, as described by the following diagram

0 Y 0

X Y 0

0 Z 0

0 1Y 0

f

0 π 0

. (8.51)

Then we have π = δ ◦ α = δ ◦ γ ◦ π. Since π is epi (it is a cokernel), we obtain that δ ◦ γ = idZ
inK(Mod-R). But then, if we denote by γ0 : Z → Y the morphism in degree 0 of γ, we obtain
that π ◦ γ0 = 1Z , hence we have found a retraction of π in (8.46). This is a contradiction, since
we assumed it did not split. ■

8.2 Snake lemma and applications
Lemma 8.34. Let A be an abelian category, and let

A B C 0

0 A′ B′ C ′

α

f

β

g h

α′ β′

(8.52)

be a commutative diagram with exact rows. Then there is an exact sequence:

ker f
α−→ ker g

β
−→ kerh

∂−→ coker f
α′
−→ coker g

β′
−→ cokerh, (8.53)

in which ∂ is called the connecting morphism. Moreover α mono implies α is mono, whereas β′ epi
implies β′ is epi.

Remark 8.35: Short exact sequences in the category of complexes.
Since the abelian structure ofCh(A) is defined degree wise, we have that a sequence inCh(A)

0→ X• f−→ Y • g−→ Z• → 0 (8.54)
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is exact inCh(A) iff, for every n ∈ Z, the corresponding

0→ Xn fn

−−→ Y n
gn−→ Zn → 0 (8.55)

is exact in A.

Theorem8.36 (Fundamental theorem in (co)homology). Consider a short exact sequence inCh(A),
for an abelian category A,

0→ X• f−→ Y • g−→W • → 0. (8.56)

Then we can associate to it a long exact sequence inA, called the long exact sequence in (co)homology,
given as follows:

. . .→ Hn(X•)
Hn(f)−−−−→ Hn(Y •)

Hn(g)−−−−→ Hn(W •)
∂−→ Hn+1(X•)→ Hn+1(Y •)→ . . . ,

(8.57)

Proof. The proof is essentially an application of the snake lemma. In particular we obtain that
∂ : Hn(W •)→ Hn+1(X•) acts as

∂ : Hn(W •)→ Hn+1(X•) (8.58)
[zn] 7→

[
(fn+1)−1

(
dnY ((g

n)−1(zn))
)]
. (8.59)

More visually it is defined by the following diagram chase:

Y n Zn

Xn+1 Y n+1 0

0 = Xn+2 0

gn

dnY 0

fn+1

dn+1
X

gn+1

dn+1
Y

fn+2

. (8.60)

■

Remark 8.37: Notation.
We denote byZn(X•) := ker dnX , the n-cycles, and byBn(X•) := im dn−1

X , the n-boundaries.
Both clearly are subobjects ofXn.

Definition 8.38: Long/short exact sequence category.
Let A be an abelian category.

• We define S, the category of short exact sequences in Ch(A), as the category whose ob-
jects are short exact sequences with objects inOb (Ch(A)) and whose morphisms, called
morphisms of short exact sequences, are triples (f, g, h) of cochain maps such that the
following diagram commutes

0 A• B• C• 0

0 X• Y • W • 0

α

f

β

g h

α′ β′

. (8.61)
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• We define L, the category of long exact sequences in A, as the category whose objects are
exact sequences inOb (ChA) andwhosemorphisms aremorphisms of complexes, i.e. fam-
ilies of maps {fn}n∈Z making the following diagram commute

. . . An An+1 An+2 . . .

. . . Bn Bn+1 Bn+2 . . .

dnA

fn

dn+1
A

fn+1

dn+2
A

fn+2

dnB dn+1
B dn+2

B

. (8.62)

Proposition 8.39. Given an abelian category A, then we can define a functor

L : S→ L, (8.63)

that, on objects, maps each short exact sequence of complexes to its corresponding exact sequence in
(co)homology. In particular a given morphism in S

0 A• B• C• 0

0 X• Y • W • 0

α

f

β

g h

α′ β′

(8.64)

gets mapped to the following morphism of long exact sequences, in L

. . . Hn(B•) Hn(C•) Hn+1(A•) Hn+1(B•) . . .

. . . Hn(Y •) Hn(W •) Hn+1(X•) Hn+1(Y •) . . .

Hn(β)

Hn(g)

∂n
1

Hn(h) ⟳

Hn+1(α)

Hn+1(f)

Hn+1(β)

Hn+1(g)

Hn(β′) ∂n
2 Hn+1(α′) Hn+1(β′)

.

In particular also the squares involving the connecting morphisms ∂n commute, in other words we have
Hn+1(f) ◦ ∂n1 = ∂n2 ◦Hn(h).

Remark 8.40: Notation.
The long exact (co)homology sequence associated to

0→ A• → B• → C• → 0 (8.65)

can be visualized by the following diagram, called the exact triangle

H•(A•) H•(B•)

H•(C•)

∂
. (8.66)

Lemma8.41 (3×3 lemma). LetA be an abelian category. Consider the following commutative diagram
with exact columns

0 A1 B1 C1 0

0 A2 B2 C2 0

0 A3 B3 C3 0

.

(8.67)
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1. If the 2nd and 3rd rows are exact, then so is the 1st.

2. If the 1st and 2nd rows are exact, then so is the 3rd.

3. If the 1st and 3rd rows are exact, and the 2nd is a complex, then the 2nd is also exact.

Lemma 8.42 (5 lemma). Let A be an abelian category. Consider the following commutative diagram
with exact rows

A1 B1 C1 D1 E1

A2 B2 C2 D2 E2.

a b c d e (8.68)

1. If b and d are mono and a is epi, then c is mono.

2. If b and d are epi and e is mono, then c is epi.

Definition 8.43: quasi-isomorphism.
LetA be an abelian category. Let f : (X•, dX)→ (Y •, dY ) be a cochain map inCh(A). We say
that f is a quasi-isomorphism iff the induced cohomology morphism

Hn(f) : Hn(X•)→ Hn(Y •) (8.69)

is an isomorphism for every n ∈ Z.

Lemma 8.44. An homotopy equivalence f : X• → Y •, i.e. an iso inK(A), is a quasi-isomorphism.

Lemma 8.45. One can find examples of quasi-isomorphism, which is not an homotopy equivalence.
(Look at morphisms of exact sequences).

Lemma 8.46. Let A be an abelian category and consider (X•, dX) ∈ Ch(A). Define (Z•, dZ) by:

Zn := Zn(X•) := ker dnX and dnZ = 0 ∀n ∈ Z. (8.70)

Analogously define the complex (B•, dB) by

Bn := Bn(X•) := im dn−1
X and dnB = 0 ∀n ∈ Z. (8.71)

Then there is a short exact sequence of complexes

0→ Z• → X• → B•[1]→ 0, (8.72)

whose associated long exact sequence breaks into short exact sequences in A.

Proof. Apart from the exactness of the short exact sequence of complexes, notice that:Hn(Z•) =
Zn and Hn(B•[1]) = Hn+1(B•) = Bn+1 for all n ∈ Z. Then the associated long exact
sequence is

. . . Bn
∂−→ Zn → Hn(X•)→ Bn+1 ∂−→ Zn+1 → Hn+1(X•)→ . . . . (8.73)

But, for each n, the above breaks into the short exact sequences

0→ Bn → Zn → Hn(X•)→ 0. ■

Lemma 8.47. Let f : (X•, dX) → (Y •, dY ) be a cochain map in Ch(A), for an abelian category
A. Assume that (ker f•, d•) and (coker f•, d•) are acyclic. Then f is a quasi-isomorphism.
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Remark 8.48 Notice that the converse of the above lemma is not true: for example the com-
plexes

X• = Y • = 0→ Z 2̇−→ Z π−→ Z/2Z→ 0 (8.74)

are both acyclic. Then the map f = (4̇, 4̇, 0), represented by

0 Z Z Z/2Z 0

0 Z Z Z/2Z 0

2̇

4̇

π

4̇ 0

2̇ π

(8.75)

is a quasi-isomorphism. Moreover the cochains (ker f)• and (coker f)• are

(ker f)• = 0→ 0→ 0→ Z/2Z→ 0 (8.76)

(coker f)• = 0→ Z/4Z 2̇−→ Z/4Z π−→ Z/2Z→ 0. (8.77)

Then we can compute thatH2((ker f)•) = Z/2Z andH0((coker f)•) = Z/2Z.

8.3 Operations on complexes
Definition 8.49: Canonical truncation.
Let (X•, dX) be a cochain complex and n ∈ Z. We define the canonical truncation of (X•, dX)
to be the complex

(
[τ≤n(X

•)]•, d[τ≤n(X•)]

)
, whose objects are

[τ≤n(X
•)]i :=


Xi if i < n

ker dnX if i = n

0 if i > n

, (8.78)

and differentials given by the induced ones. Denoted by ϵn : ker dnX → Xn the Kernel, then we
have a natural cochain map ϵ : τ≤n(X•)→ X•, given by

. . . Xn−2 Xn−1 Zn(X•) 0 . . .

. . . Xn−2 Xn−1 Xn Xn+1 . . .

dn−2

1Xn−2

dn−1

1Xn−1

0

ϵn

0

0

dn−2 dn−1 dn dn+1

, (8.79)

which is clearly amono. Moreover we can compute the associated cohomology groups (assuming
A is abelian, or that we can compute them) and they are

Hi (τ≤n(X
•)) =

{
0 if i > n

Hi(X•) if i ≤ n
. (8.80)

Moreover, since ϵ is an embedding, we can define the quotient complex, which we denote by(
[X•/τ≤n(X

•)]•, d[X•/τ≤n(X•)]

)
, whose objects are

[X•/τ≤n(X
•)]i :=


Xi if i > n

Xn/ ker dnX if i = n

0 if i < n

, (8.81)
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and differentials given by the induced one. Then, as expected

Hi (X•/τ≤n(X
•)) =

{
0 if i ≤ n
Hi(X•) if i > n

. (8.82)

And we obtain a short exact sequence of complexes

0 τ≤n(X
•) X• X•/τ≤n(X

•) 0.ϵ

Definition 8.50: Stupid truncation.
Given, as before, a cochain complex (X•, dX) and n ∈ Z, one defines its stupid truncation as the
cochain complex with objects

[σ≤n(X
•)]i =

{
Xi if i ≤ n
0 if i > n

(8.83)

and induced differentials. Then one can construct a canonical mapX• → σ≤n(X
•) as

. . . Xn−1 Xn Xn+1 . . .

. . . Xn−1 Xn 0 . . .

1Xn−1 1Xn 0

0

. (8.84)

Moreover we can compute its cohomology groups, and obtain that they are

Hi (σ≤n(X
•)) =


0 if i > n

Xn/ im dn−1
X if i = n

Hi(X•) if i < n

. (8.85)

Definition 8.51: Mapping cone.
Let f ∈ HomCh(A) (X

•, Y •) an arbitrary cochain map. We define the mapping cone of f as the
cochain complex, denoted by (Cone f)•, whose objects are

[Cone f ]n := Y n ⊕Xn+1 (8.86)

and differentials dnCone f : Y
n ⊕Xn+1 → Y n+1 ⊕Xn+2 given by the following matrix

dnCone f :=

[
dnY fn+1

0 −dn+1
X

]
. (8.87)

This really is a complex, since we have the identity

d2Cone f =

[
dnY fn+1

0 −dn+1
X

] [
dn−1
Y fn

0 −dnX

]
=

[
0 dnY f

n − fn+1dnX
0 0

]
(8.88)

and f is a cochain map (hence the last matrix is zero).

Definition 8.52: Cone of a complex.
Given a complex (X•, dX), we define the cocahin (ConeX)• as themapping cone of the cochain
map 1X• : X• → X•.
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Remark 8.53 From the definition of mapping cone we obtain the short exact sequence of com-
plexes

0 Y • (Cone f)
•

X•[1] 0,α β (8.89)

where the maps α and β (check they are indeed cochain maps) are defined by the matrices

α :=

[
1Y
0

]
and β :=

[
0 1X•[1]

]
. (8.90)

In particular, for each degree, the short exact sequence splits, in fact it is

0→ Y n → Y n ⊕Xn+1 → Xn+1 → 0, (8.91)

and the maps are induced by α and β (hence the splitting).

Lemma 8.54. Let the following be a degree-wise splitting short exact sequence

0 Y • C• W • 0.

Then there is a cochain map f : W •[−1]→ Y • s.t. C• ≃ Cone f .

Lemma 8.55. Let f : X• → Y • be a cochain map in Ch(A). Then f is a quasi-isomorphism iff the
complex (Cone f)• is acyclic.

Proof. From the short exact sequence for the Cone of f , see (8.89), and the fundamental theorem
in cohomology, one obtains the long exact cohomology sequence

. . .→ Hn−1(X•[1])
∂n

−−→ Hn(Y •)→ Hn(Cone f)→ Hn(X•[1])→ . . . . (8.92)

One can show thatHn(f) = ∂n, thenHn(f) is an isomorphism iffHn(Cone f) = 0. ■

Definition 8.56: Split complex.
A complex (X•, dX) is split iff there exist maps sn : Xn+1 → Xn, for all n ∈ Z, s.t. dnX ◦ sn ◦
dnX = dnX for all n ∈ Z (shortly d = d ◦ s ◦ d). The maps sn are called splitting maps.

Lemma 8.57. Let (X•, dX) be a complex, with cyclesZn and boundariesBn.X• is split iff, for every
n ∈ Z, there exist decompositions

Xn = Zn ⊕ Cn and Zn = Bn ⊕Kn, (8.93)

withKn ≃ Hn(X•).

Proof. In this proofwe use the general fact, forR-modules, that given an idempotent endomorph-
ism e : M →M (i.e. s.t. e2 = e), then

M = ker e⊕ im e. (8.94)

In fact for any x ∈ M , then x = e(x) + (x − e(x)) and e(x − e(x)) = 0. Moreover, given
x ∈ ker e ∩ im e, there exists y s.t. x = e(y), then

0 = e(x) = e(e(y)) = e(y) = x. ■

Definition 8.58: Split exact/contractible complex.
A complex (X•, dX) is called split exact or contractible iff it is both split and acyclic (i.e. exact).
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Remark 8.59 By the above lemma, the complex (X•, dX) is contractible iff there exist decom-
positionsXn = Zn ⊕ Cn andBn = Zn, for every n ∈ Z.

Lemma 8.60. (ConeX)• is contractible.

Proof. (ConeC)• is exact, since 1X• is a quasi-isomorphism. Then we define the splitting maps
by

sn :=

[
0 0

1Xn+1 0.

]
■

Lemma 8.61. A complex (X•, dX) is contractible iff 1X• is nullhomotopic.

Remark 8.62 This lemma can be stated as: any contractible complex is isomorphic to the 0
complex in the homotopy category.

Lemma 8.63. Let f : X• → Y • be a cochain map. Then f ∼ 0 iff f extends to[
f s

]
: ConeX → Y, (8.95)

where {sn}n∈Z are the contractions.

Lemma 8.64. Let (X•, dX) be a split complex with splitting maps s := {sn}n∈Z. Then f = s ◦
d+ d ◦ s is a cochain map (clearly, then f ∼ 0).

Remark 8.65 for allA ∈ Ob (A), we define the following complex

Dn(A) := . . .→ 0→ A
1A−−→ A→ 0→ . . . , (8.96)

where the non-zero elements are in degree n and n+ 1. ClearlyDn(A) contractible. In fact:

0 A A 0

0 A A 0

1A

0 1A
1A 1A

0

1A

. (8.97)

Lemma 8.66. for allA ∈ Ob (A) andX• ∈ Ch(A) we have, naturally in both components,

HomCh(A) (D
n(A), X•) ≃ HomA (A,X

n) . (8.98)

In other words the pair (Dn, (−)n) is an adjoint pair for every n ∈ Z, for the functors

Dn : A Ch(A)

A Dn(A)
and (−)n : Ch(A) A

X• xn.

Proposition 8.67. Let A be an abelian category. A complex (P •, dP ) is a projective object of Ch(A)
iff P i is projective in A for all i ∈ Z and (P •, dP ) is contractible.

A complex (I•, dI) is an injective object ofCh(A) iff Ii is injective inA for all i ∈ Z and (I•, dI)
is contractible.

Lemma 8.68. Assume that A is an abelian category, with enough projectives (i.e. ∀A ∈ Ob (A) there
is a projective object P ∈ Ob (A), with an epi P φ−→ A→ 0). Then Ch(A) has enough projectives.

Remark 8.69 Given a cochain complex (X•, dX), we can define an associated chain complex(
X•, d

X
)
by settingXn := X−n.
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9 Derived functors

9.1 Resolutions
Definition 9.1: (Co)homological ∂-functor.
Let A,B be abelian categories. A (co)homological ∂-functor between A and B is the data of a se-
quence of functors {Tn}n∈Z, with Tn : A → B for every n, ({Tn}n∈Z for the homological
functors) s.t. T i = 0 for all i < 0 (Ti = 0 for all i > 0) and for any short exact sequence
S ∈ S(A)

0→ A→ B → C → 0 (9.1)

for all n ∈ Z there is a connecting morphism ∂n : Tn(C) → Tn+1(A) (resp. ∂n : Tn(C) →
Tn−1(A)) satisfying

1. there is a long exact sequence

. . .→ Tn−1(C)
∂n−1

−−−→ Tn(A)→ Tn(B)→ Tn(C)
∂n

−−→ Tn+1(A)→ . . . =: T (S),
(9.2)

respectively the long exact sequence

. . .→ Tn+1(C)
∂n+1−−−→ Tn(A)→ Tn(B)→ Tn(C)

∂n−→ Tn−1(A)→ . . . =: T (S),
(9.3)

2. For any S′ ∈ S(A) and any morphism S → S′ in S(A), i.e.

0 A B C 0

0 A′ B′ C ′ 0,

f g h (9.4)

there is an associated morphism between the long exact sequences, i.e. a commutative dia-
gram (with a clear dual for the homological case)

Tn−1(C) Tn(A) Tn(B) Tn(C) Tn+1(A)

Tn−1(C ′) Tn(A′) Tn(B′) Tn(C ′) Tn+1(A′)

∂n−1

Tn−1(h) Tn(f) Tn(g)

∂n

Tn(h) Tn+1(f)

∂n−1 ∂n

.

(9.5)

Then the family T := {Tn}n∈Z : S(A)→ L(B) actually is a functor.

Remark 9.2 T 0 is always left exact, for a cohomological ∂-functor. In fact given a short exact
sequence in A

0→ A→ B → C → 0, (9.6)

the associated long exact sequence, since T−1 = 0, is

T−1(C) = 0
∂−1

−−→ T 0(A)→ T 0(B)→ T 0(C)→ . . . . (9.7)

Analogously, one checks that T0 is right exact, for any homological ∂-functor.
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Example Consider A := Mod-R, for a ring R. Consider U−1 and U0 free (in particular pro-
jective)R-modules and the morphism of modules u : U−1 → U0. Consider functor T , given by
the family

{
T 0, T 1

}
(i.e. T i = 0 for all i ̸= 1, 0), where

T 0 := kerHomR (u,−) and T 1 := cokerHomR (u,−) . (9.8)

Let’s show that T : Mod-R → Mod-R is a cohomological ∂-function. Consider a short exact
sequence of modules 0→ A→ B → C → 0. We need to show that the following is exact:

0→ T 0(A)→ T 0(B)→ T 0(C)→ T 1(A)→ T 1(B)→ T 1(C)→ 0. (9.9)

In fact we can apply the covariant hom functorHomR (u,−) and obtain

0 HomR

(
U0, A

)
HomR

(
U0, B

)
HomR

(
U0, C

)
0

0 HomR

(
U−1, A

)
HomR

(
U−1, B

)
HomR

(
U−1, C

)
0

HomR(u,A) HomR(u,B) HomR(u,C)

(9.10)
which clearly is commutative and with exact rows (both U0 and U−1 are free, hence projective,
i.e. bothHomR

(
U0,−

)
andHomR

(
U−1,−

)
are exact functors), then by the snake lemma we

obtain exactness of the long sequence.
Moreover consider C :=

{
X ∈ Ob (Mod-R)

∣∣ T 0(X) = T 1(X) = 0
}
⊂ Mod-R. Then

this subcategory ofMod-R is closed under kernel, cokernel, extension and products. In particular
C is an abelian full subcategory of Mod-R. In fact, given X,Y ∈ Ob (C), and a morphism
f : X → Y . Let K := ker f , I := im f , and C := coker f . Then we have the short exact
sequences 0 → K → X → I → 0 and 0 → I → Y → C → 0. The functor T associates to
them the long exact sequences

0→ T 0(K)→ 0→ T 0(I)→ T 1(K)→ 0→ T 1(I)→ 0 (9.11)

0→ T 0(I)→ 0→ T 0(C)→ T 1(I)→ 0→ T 1(C)→ 0. (9.12)

With simple computations one shows that I, C,K ∈ Ob (C).

Definition 9.3: Left resolution.
Let A be an abelian category, andM ∈ Ob (A). A left resolution ofM is a chain-complex:

X• := . . .→ X2
d2−→ X1

d1−→ X0 → 0 (9.13)

s.t. there exists π : X0 →M with which the augmented complex

X•
π−→M → 0 := . . .→ X2

d2−→ X1
d1−→ X0

π−→M → 0 (9.14)

is exact. We can view these conditions as stating that π is a quasi-isomorphism between X•
andM , viewed as a complex concentrated in degree 0. In fact Hi(X•) = 0 for all i ̸= 0 and
H0(X•) ≃M .

If, moreover, eachXi is a projective object in A, then the left resolutionX•
π−→ M → 0 is

called a projective resolution ofM .

Lemma 9.4. Let A be an abelian category, with enough projectives. Then everyM ∈ Ob (A) admits
a projective resolution.
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Proof. One obtains an exact resolution by taking, each time, a projection onto the kernel of the
previous map (it can be done, since A has enough projectives)

. . .→ P2
π2−→ P1

π1−→ P0
π0−→M → 0. (9.15)

We can define, for eachn ∈ N,Kn := kerπn−1. ThenKn is calledn-th syzygy ofM , sometimes
denoted byΩn(M).

Moreover the projective resolution is usually denoted by P•
π0−→M → 0. ■

Theorem 9.5 (Comparison). Let A be an abelian category. Let f−1 : M → N be a morphism in A.
Consider the chain complex (not necessairily exact)

. . .→ P3 → P2 → P1 → P0
π−→M → 0, (9.16)

with Pi projective for all i ≥ 0. Let Y•
σ−→ N → 0 be a left resolution ofN . Then there is a chain map

f : P• → Y• lifting f−1, i.e.

. . . P3 P2 P1 P0 M 0

. . . Y3 Y2 Y1 Y0 N 0

dP3

f3

dP2

f2

dP1

f1

π

f0 f−1

dY3 dY2 dY1
σ

. (9.17)

Moreover given any other chain map g := {gn}n≥0 lifting f−1, then f ∼ g the two chain maps are
homotopic. In other words the lift of f−1 is unique up to homotopy.

Lemma 9.6. Let A be an abelian category, and P• an acyclic chain complex bounded below (i.e. s.t.
∃m ∈ Z for which Pi = 0 for all i < m) with projective components. Then P• is contractible (hence
it is projective in the category of complexes).

Lemma 9.7 (Horseshoe). Let A be an abelian category. Consider the short exact sequence

0→ A
f−→ B

g−→ C → 0, (9.18)

and the projective resolutions P• → A → 0 andQ• → C → 0 for A and C . Then we can complete
the diagram with the red arrows.

0

. . . P1 P0 A 0

. . . P1 ⊕Q1 P0 ⊕Q0 B 0

. . . Q1 Q0 C 0

0

f

g

. (9.19)

In particular
(
P• ⊕Q•, d

P
• ⊕ d

Q
•

)
gives a projective resolution of B, completing the diagram in the

second row.
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Let’s now dualize everything we obtained up to now:

Definition 9.8: Right coresolution.
Let A be an abelian category andM ∈ Ob (A). A right coresolution ofM is a cochain complex

Y • := 0→ Y0
d0−→ Y 1 d1−→ Y 2 → . . . (9.20)

s.t. there exists a morphism δ0 : M → Y 0 with which the augmented complex

0→M
δ0−→ Y • := 0→M

δ0−→ Y0
d0−→ Y 1 d1−→ Y 2 → . . . (9.21)

is exact. In other words we ask that δ0 is a quasi-isomorphism between Y • andM concentrated
in degree 0. ThenHi(Y •) = 0 for all i ̸= 0 andH0(Y •) ≃M .

If, moreover, each Y i is an injective object in A, then the right coresolution 0→M
δ0−→ Y •

is called an injective coresolution ofM .

Lemma 9.9. Let A be an abelian category, with enough injectives. Then every objectM ∈ Ob (A)
admits an injective coresolution.

Proof. One obtains an exact resolution by taking, each time, the cokernel of the previous map

0→M
δ0−→ I0

δ1−→ I1
δ1−→ I2 → . . . . (9.22)

We can define, for each n ∈ N, Cn := coker δn−1. Then Cn is called n-th cosyzygy of M ,
sometimes denoted byΩn(M).

Moreover the projective resolution is usually denoted by 0→M
δ0−→ I•. ■

Theorem 9.10 (Comparison). Le A be an abelian category. Let f−1 : M → N a morphism in A.
Consider the cochain complex (not necessairily exact)

0→ N
η−→ I0 → I1 → I2 → I3 → . . . , (9.23)

with Ii injective for all i ≥ 0. Let 0 → M
δ0−→ Y • a right coresolution ofM . Then there exists a

cochain map f : Y • → I• extending f−1, i.e.

0 M Y 0 Y 1 Y 2 Y 3 . . .

0 N I0 I1 I2 I3 . . .

δ0

f−1

d0Y

f0

d1Y

f1

d2Y

f2

d3Y

f3

η d0I d1I d2I d3I

. (9.24)

Moreover, given any other cochain map g := {gn}n≥0 extending f
−1, then f ∼ g, the two cochain

maps are homotopic. In other words the extension of f−1 is unique up to homotopy.

9.2 Left derived functors
Remark 9.11 A functor F : A → B between additive categories induces a functor, again de-
noted by F ,

F : Ch(A)→ Ch(A) (9.25)
(X•, dX) 7→

(
F (X•), dF (X•)

)
, (9.26)
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where [F (X•)]
n := F (Xn) and dnF (X•)

:= F (dnX•). Given a morphism f : X• → Y • in
Ch(A), one has dY ◦ f = f ◦ dX . Then F (f) ◦ F (dX) = f(dY ) ◦ F (f), i.e. F (f) is a
morphism inCh(B).

Moreover, if F is an additive functor, then f = s ◦ dX + dY ◦ s implies F (f) = F (s) ◦
F (dX) + F (dY ) ◦ F (s), hence F induces a functor

F : K(A)→ K(B). (9.27)

Definition 9.12: Left derived functors.
LetA andB be abelian categories. Assume thatA has enough projectives andF : A→ B is a right
exact functor. We define the left derived functor LiF : A→ B s.t. LiF (A) := Hi (F (P•)), for
P• → A→ 0 a projective resolution ofA and i ≥ 0.

Remark 9.13 One actually needs to prove that the above is a good definition, i.e. thatLiF does
not depend on the projective resolution P• → A→ 0.

Moreover one can prove thatL0F ≃ F as functors. In fact consider any projective resolution
P• → A→ 0 ofA. Then

. . .→ P2 → P1
d1−→ P0 → A→ 0 (9.28)

is exact, with F right exact. Then

F (P1)
F (d1)−−−−→ F (P0)→ F (A)→ 0 (9.29)

is also exact. In particular cokerF (d1) ≃ F (A). But then L0F (A) = H0 (F (P•)). We know
that

F (P•) = . . .→ F (P1)
F (d1)−−−−→ F (P0)→ 0 (9.30)

hence thatH0 (F (P•)) = cokerF (d1) = F (A).

Lemma 9.14.

(a) For each i ∈ N, LiF is well defined, up to natural isomorphism.

(b) Let α : A→ C be a morphism in A. Then there are natural maps

LiF (α) : LiF (A)→ LiF (C). (9.31)

(c) For any i ≥ 0, the functor LiF is additive.

Lemma 9.15. Let f : A→ C be a morphism in A. Then L0F (f) = F (f).

Proposition9.16. LetF andLiF be as in the above definition. IfA ∈ A is projective, thenLiF (A) =
0 for all i > 0 (recall that L0F (A) ≃ F (A)).

Definition 9.17: F-acyclic object.
LetA be an abelian category with enough projectives andF : A→ B be a right exact functor. An
objectA ∈ Ob (A) is called F -acyclic iff LiF (A) = 0 for all i > 0.

Definition 9.18: F-acyclic resolution.
Let A be an abelian category with enough projectives, F : A → B be a right exact functor and
A ∈ Ob (A). A left resolution Q• → A → 0 of A is called an F -acyclic resolution iff Qi are
F -acyclic for all i ≥ 0.
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Remark 9.19 Any projective objectA ∈ Ob (A) is F -acyclic for any right exact functor F .

Theorem 9.20. LetA andB be abelian categories. Assume thatA has enough projectives andF : A→
B is a right exact functor. Then the left derived functors {LiF}i≥0 form a homological ∂-functor.

Definition 9.21: Morphism of (co)homological ∂-functor.
Let S, T : A → B be cohomological ∂-functors. A morphism S → T is a sequence of natural
transformations ηn : Sn → Tn commuting with ∂. More explicitly, given any short exact se-
quence 0→ A→ B → C → 0 in A, the following diagram commutes

Sn(C) Sn+1(A)

Tn(C) Tn+1(A)

∂n
S

ηnC ηn+1
A

∂n
T

. (9.32)

(Clearly for homological ∂-functors one only has to dualize).

Definition 9.22: Universal cohomological ∂-functor.
A cohomological ∂-functorT is called universal iff given any cohomological ∂-functorS, and any
natural transformation η0 : T 0 → S0, then ∃ ! {ηn : Tn → Sn}n≥0 a natural transformation
of ∂-functors extending η0. (Analogously of homological ∂-functors).

Lemma 9.23. Consider an exact functor F : A → B. Setting T 0 := F and Tn := 0 for all n > 0
defines a universal cohomological ∂-functor {Tn}n∈N. (Analogously setting T0 := F and Tn := 0,
for a universal homological ∂-functor).

Theorem 9.24. LetA andB be abelian categories. Assume thatA has enough projectives andF : A→
B is a right exact functor. Then the left derived functors {LiF}i≥0 form a universal homological ∂-
functor.

Lemma9.25. LetA andB be abelian categories. Assume thatA has enough projectives andF : A→ B
is a right exact functor. ConsiderG : B→ C an exact functor, then:

Li (G ◦ F ) ≃nat. G ◦ LiF ∀ i ≥ 0. (9.33)

Lemma 9.26. Consider G : A → B an exact functor between abelian categories. Consider X• ∈
Ch(A), then for every i ∈ Z

G (Hi (X•)) = Hi (G(X•)) . (9.34)

Lemma 9.27 (Dimension shifting). Let A and B be abelian categories. Assume that A has enough
projectives and F : A → B is a right exact functor. Consider a short exact sequence 0→ K → Q→
A→ 0 in A, withQ an F -acyclic object (e.g. ifQ is projective). Then

1. L1F (A) = ker (F (K)→ F (Q)),

2. LiF (A) ≃ Li−1F (K) for all i ≥ 2.

Remark 9.28 Let A be an abelian category. We define

Ch≥0(A) :=
{(
X•, d

X
)
∈ Ch(A)

∣∣Xn = 0∀n < 0
}
. (9.35)

By the fundamental theorem on homology, we know that {Hn}n∈Z, forHn : Ch≥0(A)→ A, is
a homological ∂-functor
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Lemma 9.29. Moreover one can prove that {Hn}n∈Z is a universal homological ∂-functor.

Lemma 9.30. Let A and B be abelian categories, s.t. A has enough projectives. Consider F : A → B
an exact functor, then

LiF (A) = 0 ∀A ∈ Ob (A) , ∀ i > 0. (9.36)

Moreover we also know that L0F ≃ F .

9.3 Right derived functors
Remark 9.31: Standard assumption.
In the following section we will assume the following: A and B are abelian categories. Moreover
we assume that A has enough injectives, and F : A→ B is a left exact functor.

Definition 9.32: Right derived funtors.
Let A, B and F be as in remark 9.31. We define the right derived functors RiF : A → B s.t.
RiF (A) := Hi (F (I•)), for 0→ A→ I• an injective coresolution ofA, and i ≥ 0.

Remark 9.33: Important!.
Recall thatA ∈ Ob (A) is injective iffA is projective inAop. Then, given an injective coresolution
0→ A→ I• forA, then I• → A→ 0 becomes a projective resolution in Aop.

Then, given F : A→ B a left exact functor, we define F op : Aop → Bop a covariant functor.
Clearly Aop has enough projectives, moreover F op is right exact (in fact F is left exact iff F op is
right exact). Then we can define the left derived functor LiF op(A). Finally we have the equality

(LiF
op)

op
(A) = RiF (A). (9.37)

In particular
{
RiF

}
i≥0

form a universal cohomological ∂-functor. Moreover, dualizing the pre-
vious results, we obtain that:

• R0F ≃ F ,

• Given a short exact sequence in A

0→ A→ B → C → 0 (9.38)

there is an associated long exact sequence

0→ F (A)→ F (B)→ F (C)
∂0

−→ R1F (A)→ R1F (B)→ RiF (C)
∂1

−→ . . . .
(9.39)

Definition 9.34: F -acyclic objects.
Let A, B and F be as in remark 9.31. An objectA ∈ Ob (A) is F -acyclic iff

RiF (A) = 0 ∀ i > 0. (9.40)

Remark 9.35 Any injective objectQ ∈ Ob (A) is F -acyclic for any left-exact functor F .

Lemma9.36. ConsiderA an abelian category with enough injectives, andF : A→ B an exact functor,
thenRiF = 0 for all i > 0.

Example Let A an abelian category with enough injectives. FixM ∈ Ob (A), then consider

HM := HomA (M,−) : A→ Ab (9.41)
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the covariant Hom functor. We know thatHM is left exact. Then we can define the right derived
functors of HM . In particular they are defined as follows. For an object A ∈ Ob (A), take an
injective coresolution ofA, 0→ A→ I•, then

RiHM (A) = Hi (HomA (M, I•)) . (9.42)

Moreover one introduces the notation (which is especially useful in the category of modules)

ExtiA (M,A) := RiHM (A). (9.43)

Proposition 9.37. Let A be abelian with enough injectives (e.g. A = Mod-R). Fix A ∈ Ob (A),
then the following are equivalent:

1. A is injective, i.e. HomA (−, A) is exact;

2. ExtiA(M,A) = 0 for allM ∈ Ob (A) and for all i ≥ 0;

3. Ext1A(M,A) = 0 for allM ∈ Ob (A).

We can dualize the above proposition and obtain

Proposition 9.38. Let A be abelian with enough injectives (e.g. A = Mod-R). FixM ∈ Ob (A),
then the following are equivalent:

1. M is projective, i.e. HomA (M,−) is exact;

2. ExtiA(M,A) = 0 for allA ∈ Ob (A) and for all i ≥ 0;

3. Ext1A(M,A) = 0 for allA ∈ Ob (A).

9.4 Derived functors of contravariant functors
Remark 9.39: Right derived functors of a contravariant functor.
Let A and B be abelian categories and F : A → B a contravariant left-exact functor (e.g. F =
HM := HomA (−,M) forM ∈ Ob (A)). ThenF : Aop → B is covariant and, still, left-exact. If
Aop has enough injectives (iff A has enough projectives) we can define the right derived functors
RiF : Aop → B, for i ≥ 0. In particular this is computed by taking a projective resolution of
A ∈ Ob (A): P• → A → 0, which gives an injective coresolution 0 → A → P • of A in Aop.
Then we define

RiF (A) := Hi(F (P•)). (9.44)

Notice that given a chain complex P•, then F (P•) is a cochain complex.

Remark 9.40 LetA be an abelian category with enough injectives and projectives (e.g. forA =
Mod-R). Then, fixedM ∈ Ob (A),HM := HomA (M,−) is a covariant, left-exact, functor. In
particular it admits right-derived funtors

RiHM (A) = ExtiA (M,A) = Hi (HM (I•)) , (9.45)

for an injective coresolution0→ A→ I• ofA. Moreoverwe can considerHA := HomA (−, A),
which is a contravariant, left-exact, functor. Also this admits right-derived functors

RiHA(M) = Hi
(
HA(P•)

)
, (9.46)

for P• →M → 0 a projective resolution ofM .
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Theorem 9.41 (Balancing of Ext).

RiHM (A) = ExtiA(M,A) ≃ RiHA(M). (9.47)

Remark 9.42: Consequence.
This theoremmeans thatExtiA(M,A) can be computed in two equivalent ways: We can consider
0→ A→ I• an injective coresolution ofA, or P• →M → 0 a projective resolution ofM and

Hi (HomA (M, I•)) ≃ ExtiA(M,A) ≃ Hi (HomA (P•, A)) . (9.48)

Remark 9.43 Let A be an abelian category with arbitrary coproducts. Consider (X•
i , dXi

)i∈I
a family of cochain complexes in Ch(A). Then the cochain complex (X̃•, dX̃), with objects
(X̃•)n :=

∐
i∈I X

n
i and differentials dn

X̃
:=

∐
i∈I d

n
Xi

, is a coproduct ofX•
i in Ch(A). Then

one checks that
Hn(X̃) =

∐
i∈I

Hn (Xi) ∀n ∈ Z. (9.49)

Analogously, if A admits arbitrary products, consider (X•
i , dXi)i∈I a family of cochain com-

plexes in Ch(A). Then the cochain complex (X̃•, dX̃), with objects (X̃•)n :=
∏
i∈I X

n
i and

differentials dn
X̃

:=
∏
i∈I d

n
Xi

, is a product ofX•
i inCh(A). Then one checks that

Hn(X̃) =
∏
i∈I

Hn (Xi) ∀n ∈ Z. (9.50)

Lemma 9.44. Let (L,R) be an adjoint pair of functorsL : A→ B andR : B→ A, between additive
categories. Then (L,R), thanks to naturality of the adjunction, induces an adjoint pair of morphisms

L : Ch(A)→ Ch(B) and R : Ch(B)→ Ch(A). (9.51)

Proposition 9.45. Let A and B be abelian categories. Consider an adjoint pair of functors (F,G), for
F : A → B andG : B → A. Assume that A has enough projectives and arbitrary coproducts, whereas
B has enough injectives and arbitrary products. Let {Aα}α∈A ⊂ Ob (A) be a family of objects of A
and {Bβ}β∈B ⊂ Ob (B) be a family of objects of B. Then

LiF

( ∐
α∈A

Aα

)
≃

∐
α∈A

LiF (Aα) (9.52)

and

RiF

( ∏
β∈B

Bβ

)
≃

∏
β∈B

RiG (Bβ) . (9.53)

9.5 Derived functors of tensor product functors
Recall that, for a ringR, andMR ∈ Mod-R, then, as seen in proposition 7.11,

MR ⊗R − : R-Mod→ Ab and HomZ (M,−) : R-Mod→ Ab (9.54)

constitute an adjoint pair (MR ⊗R −,HomZ (M,−)).
As a consequence TM := MR ⊗R − is a left adjoint, hence it is right exact and preserves

arbitrary coproducts and lim−→.

Definition 9.46: Flat module.
ConsiderMR ∈ Mod-R. We say thatMR is flat iff TM :=MR ⊗R − is exact (i.e. iff TM is also
left exact). Simmetrically RN ∈ R-Mod is flat iff−⊗R N is exact.
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Proposition 9.47. LetMR ∈ Mod-R. The following are equivalent:

1. MR is flat;

2. for every mono 0 → RA
µ−→ RB of left R-modules, then idM ⊗ µ : M ⊗ A → M ⊗ B is

mono (in Ab);

3. Li (M ⊗R −) (N) = 0 for all i ≥ 1 and for allN ∈ R-Mod;

4. L1 (M ⊗R −) (N) = 0 for allN ∈ R-Mod.

Dually:

Proposition 9.48. Let RN ∈ R-Mod. The following are equivalent:

1. RN is flat;

2. for every mono 0 → AR
µ−→ BR of right R-modules, then µ ⊗ idN : A ⊗ N → B ⊗ N is

mono (in Ab);

3. Li (−⊗R N) (M) = 0 for all i ≥ 1 and for allM ∈ Mod-R;

4. L1 (−⊗R N) (M) = 0 for allM ∈ Mod-R.

Remark9.49 Combining the abovepropositionsweobtain thatMR is flat iffMR is (−⊗R N)-
acyclic for allRN leftR-modules. AnalogouslyRN is flat iffRN is (M ⊗R −)-acyclic for allMR

rightR-modules.

Definition 9.50: Notation.
Called TM :=M ⊗R −, then we define

TorRi (M,N) := Li (M ⊗R −) (N). (9.55)

Theorem 9.51 (Balancing of Tor).

TorRi (M,N) = Li (M ⊗R −) (N) = Li (−⊗R N) (M) (9.56)

for all i ≥ 0, allM ∈ Mod-R and allN ∈ R-Mod.

Remark 9.52: Consequence.
The above theoremmeans thatTorRi (M,N) can be computed in two equivalent ways: Consider
P• → RN → 0 a projective resolution of RN or Q• → MR → 0 a projective resolution of
MR, then

Hi (M ⊗R P•) ≃ TorRi (M,N) ≃ Hi (Q• ⊗R N) . (9.57)

Proposition 9.53. Let {Mi}i∈I be a family of rightR-modules. Then

1.
⊕

i∈IMi is flat iffMi is flat for all i ∈ I ,

2. If {Mi}i∈I is a direct system of flatR-modules, then the filtered direct limit lim−→i∈IMi is flat.

Remark 9.54 For every RN TN := − ⊗R N is a left adjoint. This means that TN preserves
colimts, in particular, for every direct system {Mi, Fij}i≤j , then(

lim−→
i∈I

Mi

)
⊗R N ≃ lim−→

i∈I
(Mi ⊗R N) . (9.58)
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Remark 9.55
lim−→
i∈I

Mi flat ≠⇒ Mi flat. (9.59)

In fact every module is the filtered direct limit of its finitely generated submodules. Though it is
not true that, givenM flat, then its finitely generated submodules are flat.

As an example any ring R is a free, hence flat, R-module. Though this doesn’t imply that
its (finitely generated) ideals are flat. For instance, take R := K[x, y], for a field K. Consider
m := (x, y) the maximal ideal generated by x and y. Consider the mono 0→ m

ϵ−→ R, and

idm ⊗ ϵ : m⊗R m→ m⊗R R ≃ m (9.60)
a⊗ b 7→ a · b. (9.61)

In fact 0 ̸= x⊗ y − y ⊗ x 7→ xy − yx = 0, thenm is finitely generated, but not flat.

Proposition 9.56. Let A and B be abelian categories with enough projectives. Consider F : A → B
a right exact functor. Then LiF can be computed using F -acyclic resolutions, instead of projective
resolutions. More explicitly, given Q• → A → 0 a resolution of A s.t. Qi is F -acyclic for each i,
then

LiF (A) ≃ Hi (F (Q•)) . (9.62)

Remark 9.57 In particularTorRi (−,−) can be computed using flat resolutions.

Remark 9.58: Flat modules.
Clearly any projective PR rightR-module is flat, since it is−⊗RN-acyclic for all RN modules.
Analogously a projective leftR-module RP is flat. In particular any free module is flat.

Example: Flat modules. Recall the definition of localization: given a commutative ringR and
a multiplicatively closed subset S ⊂ R, i.e. s.t. 0 /∈ S, 1 ∈ S and st ∈ S for all s, t ∈ S, we can
consider the localization

RS = R
[
S−1

]
:=

{
r

s

∣∣∣∣ r ∈ R, s ∈ S and r
s
=
r′

s′
⇐⇒ ∃ t ∈ S s.t. t (rs′ − r′s) = 0

}
.

(9.63)
Notice, moreover, that given any moduleM , then

M ⊗R RS =:MS =
{x
s

∣∣∣ x ∈M, s ∈ S
}

(9.64)

and x/s = x′/s′ iff there exists t ∈ S s.t. t (xs′ − x′s) = 0. In particular x/1 = 0 iff ∃ t ∈ S
s.t. tx = 0. Moreover any element ζ ∈ MR ⊗R RS can be represented as y ⊗ 1/s, for s ∈ S
and y ∈M .

Let’s prove that RS is a flat R-module. Consider a mono µ : AR ↣ BR, we have to prove
that

µ⊗ 1RS
: AR ⊗R RS BR ⊗R RS

is still mono. Let’s consider x/t := x ⊗ 1/t ∈ AR ⊗R RS , then µ(x/t) := µ(x)/t. Assume
µ(x)/t = 0, i.e. there exists s ∈ S s.t. sµ(x) = 0, which means µ(sx) = 0, hence sx = 0, since
µ is mono. But this means that x/t = 0.

As a consequence, for anyMR flatR-module, we obtain that its localization at S, i.e.MS :=
MR ⊗R RS , is still flat. This is because, for all NR ∈ Mod-R, associativity of tensor product
implies

N ⊗RMS := N ⊗R (M ⊗R RS) ≃ (N ⊗RM)⊗R RS .
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Theorem 9.59 (Lazard). A module is flat iff it is a filtered direct limit of projective modules, or a direct
limit of finitely generated free modules. (It can be specialized to left or right modules, then every module
in the statement has to be either left or right, accordingly).

Lemma 9.60. Let C and D be abelian categories, and L : C→ D and R : D→ C be an adjoint pair
(L,R). Assume that L is an exact functor. Then, if I is an injective object of D, then R(I) is injective
in C. Dually, ifR is exact, and P is a projective object of C, then L(P ) is a projective object of D.

Proposition 9.61. Let SFR be an S-R-bimodule and SE be an injective left S-module, then

• If FR is flat, thenHomS (SFR, SE) is an injective leftR-module.

• Conversely, if SE is an injective cogenerator of S-Mod and HomS (SFR, SE) is an injective
leftR-module, then FR is flat.

Corollary 9.62. Since Q/Z is an injective cogenerator in the category Ab = Mod-Z: it is the direct
sum of the injective envelopes of the simple modules Z/pZ:

Q/Z =
⊕
p∈P

E (Z/pZ) . (9.65)

The module ZFR is flat iffHomZ (FR,Q/Z) is an injective leftR-module. We introduce the following
notation

F ∗
R := HomZ (FR,Q/Z) (9.66)

and call this important module, the character module of FR.

Theorem 9.63 (Dimension shifting for right derived functors).

1. LetF : A→ B be a covariant left-exact functor between abelian categories, withA having enough
injectives. LetQ be an F -acyclic object (e.g. Q injective) and

0→ K → Q→ A→ 0 (9.67)

be a short exact sequence. Then, for all i ≥ 1,

RiF (A) ≃ Ri+1F (K). (9.68)

2. Let F : A → B be a contravariant left-exact functor between abelian categories, with A having
enough projectives. LetQ be an F -acyclic object (e.g. Q projective) and

0→ K → Q→ A→ 0 (9.69)

be a short exact sequence. Then, for all i ≥ 1,

RiF (K) ≃ Ri+1F (A). (9.70)

Proof.

1. Consider the long exact sequence

R1F (K)→ R1F (Q) = 0→ R1F (A)→ R2F (K)→ R2F (Q) = 0→ . . . . (9.71)

SinceRiF (Q) = 0 for all i, we have our thesis.
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2. Consider the long exact sequence

R1F (A)→ R1F (Q) = 0→ R1F (K)→ R2F (A)→ R2F (Q) = 0→ . . . . (9.72)

SinceRiF (Q) = 0 for all i, we have our thesis. ■

Remark 9.64 Assume that A is an abelian category with enough projectives. ConsiderM ∈
Ob (A) such that, for allN ∈ Ob (A),

Extn+iA (M,N) = 0 ∀ i ≥ 0. (9.73)

By dimension shifting Ext1A(Kn, N) = Ext2A(Kn−1, N) = . . . = Extn+1
A (M,N) for all

N ∈ Ob (A). And, moreover, forKn = Ωn(M), the n-th syzygy ofM , we have

Extn+1
A (M,N) ≃ Ext1A(Kn, N). (9.74)

In particular the above condition holds iffKn is projective.
Analogously, if A has enough injectives we obtain: By dimension shifting Ext1A(M,Cn) =

Ext2A(M,Cn−1) = . . . = Extn+1
A (M,N) for all N ∈ Ob (A). And, moreover, for Cn =

Ωn(N), the n-th cosyzygy ofN , we have

Extn+1
A (M,N) ≃ Ext1A(M,Cn). (9.75)

In particular Extn+iA (M,N) = 0∀ i ≥ 0 iffCn is injective.

Lemma 9.65 (Schanuel). Let A be an abelian category. Let P,Q ∈ Ob (A) be projective objects.
Assume that the following are short exact sequences

0→ K → P →M → 0 and 0→ H → Q→M → 0. (9.76)

ThenK ⊕Q ≃ H ⊕ P . In particularK is projective iffH is projective.

Corollary 9.66. Consider the two long exact sequences with Pi, Qi projective

0→ Kn → Pn−1 → Pn−2 → . . .→ P1 → P0 →M → 0 (9.77)

and
0→ Hn → Qn−1 → Qn−2 → . . .→ Q1 → Q0 →M → 0. (9.78)

Then
Kn ⊕Qn−1 ⊕ Pn−2 ⊕ . . . ≃ Kn ⊕ Pn−1 ⊕Qn−2 ⊕ . . . . (9.79)

In particularKn is projective iffHn is projective.

Definition 9.67: Projective dimension.
Let A be an abelian category, with enough proectives. ConsiderM ∈ Ob (A). We define the
projective dimension of M , denoted by p.d.(M), as the smallest integer n ∈ N s.t. there exist
Pi ∈ Ob (A) projective and an exact sequence

0→ Pn → Pn−1 → . . .→ P1 → P0 →M → 0, (9.80)

i.e. it is the minimal length of a projective resolution ofM . Equivalently n is the minimal index
s.t. the n-th syzygy ofM is already a projective object. If no finite resolution exists, we define
p.d.M =∞.
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Remark 9.68 The projective dimension is well defined thanks to our corollary to Schanuel
lemma.

Example: Infinite projective dimension. LetR := Z/2Z andM := Z/2Z as anR-module.
Then

0→ Z/2Z→ Z/4Z π−→ Z/2Z→ 0 (9.81)
is exact. This means thatΩ1(M) =M , hence p.d.M =∞.

Analogously for R := K[x]/
(
x2

)
, for a field K, R is called the ring of dual numbers. Then

MR := (x)/(x2) has infinite projective dimension.

Proposition 9.69. Let A be an abelian category with enough projectives. LetM ∈ Ob (A), then the
following are equivalent:

1. p.d.M ≤ n;

2. Extn+iA (M,N) = 0 for allN ∈ A, and all i ≥ 1;

3. Extn+1
A (M,N) = 0 for allN ∈ A.

Corollary 9.70. IfM ∈ Ob (A) (for A as above) has p.d.M = n, then Extn+1
A (M,N) = 0 for

allN ∈ Ob (A) and ∃N0 ∈ Ob (A) s.t. ExtnA(M,N0) ̸= 0.

Let’s now dualize everything for injectives

Lemma 9.71 (Schanuel for injectives). Let A an abelian category andM ∈ Ob (A). Let I, E ∈
Ob (A) be injective objects. Assume the following are short exact sequences

0→M → I → C → 0 and 0→M → E → D → 0. (9.82)

Then C ⊕ E ≃ I ⊕D. In particularD is injective iff C is injective.

Corollary 9.72. Consider the two long exact sequences with In, En injective

0→M → I0 → I1 → . . .→ In−1 → C → 0 (9.83)

and
0→M → E0 → E1 → . . .→ En−1 → D → 0. (9.84)

Then
C ⊕ En−1 ⊕ In−2 ⊕ . . . ≃ D ⊕ In−1 ⊕ En−2 ⊕ . . . . (9.85)

In particular C is injective iffD is injective.

Definition 9.73: Injective dimension.
Let A be an abelian category with enough injectives. Consider M ∈ Ob (A). We define the
injective dimension ofM , denoted by i.d.M , as the smallest integer n ∈ N s.t. there exist Ij ∈
Ob (A) injective and an exact sequence

0→M → I0 → I1 → . . .→ In−1 → In → 0, (9.86)

i.e. n is the minimal length of an injective coresolution ofM . Equivalently n is the minimal index
s.t. the n-th cosyzygy ofM is already an injective object. If no finite resolution exists, we define
i.d.M =∞.

Example: Infinite injective dimension. Consider R := Z/4Z. Prove that R is self injective,
i.e. R is injective as anR-module (you can prove using Baer’s criterion). LetMR := Z/2Z. Prove
that i.d.MR =∞.
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Proposition 9.74. Let A be an abelian category with enough injectives. LetM ∈ Ob (A), then the
following are equivalent:

1. i.d.M ≤ n;

2. Extn+iA (N,M) = 0 for allN ∈ A, and all i ≥ 1;

3. Extn+1
A (N,M) = 0 for allN ∈ A.

Definition 9.75: Right global dimension ofR.
LetR be a ring. We define the right global dimension ofR, denoted by r.gldR, as

r.gldR := sup {p.d.MR |MR ∈ Mod-R} . (9.87)

Theorem 9.76 (Global dimension). Consider the following numbers:

(2) := sup {i.d.MR |MR ∈ Mod-R} (9.88)
(3) := sup {p.d. R/IR | IR ◁ R is a right ideal } (9.89)
(4) := sup {n ∈ N | ExtnA(M,N) ̸= 0 for someMR, NR ∈ Mod-R} . (9.90)

Let’s call (1) := r.gldR. Then, if finite, (1) = (2) = (3) = (4). Moreover, if any is infinite, also all
the others are.

Lemma 9.77. LetR be a ring. Consider the short exact sequences

0→ K → F →M → 0 and 0→ H → G→M → 0, (9.91)

with F,G flat. ThenK is flat iffH is flat.

Definition 9.78: Flat (weak) dimension.
Let R be a ring andMR ∈ Mod-R. We define the flat (or weak) dimension ofMR, denoted by
f.d.MR orw.d.MR, as the minimum length of a flat resolution ofM .

Remark 9.79 As before, by the above lemma, this is a good definition.

Proposition 9.80. ForMR ∈ Mod-R, the following are equivalent:

1. w.d.M ≤ n;

2. TorRn+i(N,M) = 0 for allN ∈ A, and all i ≥ 1;

3. TorRn+1(N,M) = 0 for allN ∈ A.

Definition 9.81: Right weak-global dimension.
LetR be a ring. We define the right weak global dimension ofR, denoted by r.w.gldR, as

r.w.gl.dimR := sup {w.d.MR |MR ∈ Mod-R} . (9.92)

Remark 9.82 Notice that r.w.gl.dimR = sup {w.d.RN | RN ∈ R-Mod}. Then we can
analogously define the left weak global dimension ofR and r.w.gl.dimR = l.w.gl.dimR.

Remark 9.83 ConsiderMR ∈ Mod-R and its character moduleM∗ := HomZ (M,Q/Z).
We proved thatMR is flat iffM∗ is injective. Moreover we can define a canonical map µ : M →
M∗∗ that acts sending an element of M to the corresponding valuation map on M∗. More
explicitly, given x ∈ MR, µ(x) ∈ HomZ (M

∗,Q/Z) is the map which, on f ∈ M∗ =
HomZ (M,Q/Z), acts by µ(x)(f) := f(x). Notice that µ is mono, since Q/Z is an injective
cogenerator of Ab. In fact, for any 0 ̸= x ∈ M , we can define a nonzero map g : ⟨x⟩Z → Q/Z
which can be extended to the wholeM .
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Proposition 9.84. LetMR be a rightR-module, then the following are equivalent:

1. MR is flat;

2. M∗ is an injective leftR-module;

3. for all RI ◁ RR (a left ideal)

MR ⊗R I ≃MI =

{
n∑
i=1

xiai

∣∣∣∣∣ xi ∈MR, ai ∈ RI, n ∈ N

}
; (9.93)

4. TorR1 (M,R/RI) = 0 for all RI ◁ RR.

(Clearly all of the above holds true even for leftR-modules).

Remark 9.85 Consider the embedding ϵ : I ↪→ R of I intoR andMR ∈ Mod-R, then we can
take the tensor idM ⊗ ϵ : M ⊗R I →M ⊗R R ≃M acting as x⊗ a 7→ xa. Then

im(idM ⊗ ϵ) =

{
n∑
i=1

xiai

∣∣∣∣∣ xi ∈M,ai ∈ I

}
=MI. (9.94)

ThusM ⊗ I ≃MI iff idM ⊗ ϵ is mono.

Lemma 9.86. Consider f : MR → NR a morphism in the catogory of right R-modules. Let f∗ :=
HomZ (f,Q/Z).

• f is mono iff f∗ is epi,

• f is epi iff f∗ is mono.

Lemma 9.87. ConsiderMR and RN . Then there are canonical isomorphisms:

• MR ⊗R R ≃ R as rightR-modules (resp. R⊗R N ≃ RN as leftR-modules),

• HomR (R,M) ≃M as rightR-modules (resp. HomR (R,N) ≃ N as leftR-modules),

• M ⊗R R/RI ≃M/MI as abelian groups (resp. R/IR ⊗N ≃ N/IN as abelian groups).

Exercise 1 LetK be a field. ConsiderR := K[x, y] andm := (x, y). ThenR/m ≃ K.

• Show thatK has a projective resolution

0→ R
β−→ R⊕R α−→ R→ R/m ≃ K→ 0, (9.95)

where β =

[
−y
x

]
and α(e1) = x, α(e2) = y.

• Show thatTorR2 (K,K) ≃ TorR1 (m,K) ≃ K, sot thatm is torsion-free and not flat.

• p.d.m = 1, p.d.K = 2 andw.d.K = 2.

Proposition 9.88.

1. TorRn
(⊕

i∈IMi, N
)
≃

⊕
i∈I Tor

R
n (Mi, R)
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2. For a (from the proof I guess it is filtered) direct system of modules {Mi, fji}i≤j

TorRn
(
lim−→
i∈I

MI , N
)
≃ lim−→

i∈I
TorRn (Mi, N). (9.96)

This theorem holds also for the second component of Tor.

Lemma 9.89. LetMR ∈ Mod-R.M is flat iff

TorR1 (M,R/I) = 0 (9.97)

for all RI ◁ R finitely generated left ideal.

Proposition 9.90. Let A be an abelian category with products, coproducts, enough injectives and pro-
jectives. For any family {Mi}i∈I , {Ni}i∈I and any objectM,N of A and any n ∈ N:

1. ExtnA
(
M,

∏
i∈I Ni

)
≃

∏
i∈I Ext

n
A(M,Ni)

2. ExtnA
(⊕

i∈IMi, N
)
≃

∏
i∈I Ext

n
A(Mi, N)

Remark 9.91 Let {Mi, fji}i≤j be a directed system of modules. In general

ExtRn
(
lim−→
i∈I

Mi, N
)
̸≃ lim−→

i∈I
ExtRn (Mi, N). (9.98)

Example Let FR be a flat, but not projective rightR-module. Then there exists a moduleN s.t.
Ext1R(F,N) ̸= 0. Moreover F = lim−→i∈I Gi, forGi finitely generated free modules (by Lazard
theorem). Then, for all i ∈ I , Ext1R(Gi, N) = 0. In other words we have a counterexample to
the above "equality".

(Notice that there exist module such as FR, in fact Q is a flat, but not projective, module; in
particular it is flat, since it is a localization of Z).

Definition 9.92: Right (left) hereditary ring.
A ringR is right (resp left) hereditary iff every submodule of a projective right (resp left)R-module
is projective.

Proposition 9.93 (Characterization of hereditary rings). Let R be a ring, then the following are
equivalent

1. R is right hereditary;

2. r.gl.dimR ≤ 1;

3. Ext2R(M,N) = 0 for allM,N ∈ Mod-R;

4. Ext2R(R/I,N) = 0 for allNR ∈ Mod-R and IR ◁ R right ideal;

5. IR is projective for every right ideal IR ◁ R.

Clearly there exists also a left version of this proposition.

Example Being right or left hereditary is not symmetrical. In particular Kaplansky construc-
ted an example of a ring R which is right hereditary, but has l.gl.dimR = 2, i.e. it is not left
hereditary. Small gave another example of a right hereditary ringR, with l.gl.dimR = 3.
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Recall the definition of weak global dimension of a ringR:

w.gl.dimR = sup {w.d.MR |MR ∈ Mod-R} . (9.99)

(By symmetry ofTor functor this coincides with the left weak global dimension).

Proposition 9.94. LetR be a ring. The following are equivalent:

1. w.gl.dimR ≤ 1;

2. TorR2 (M,N) = 0 for allM ∈ Mod-R andN ∈ R-Mod;

3. Every submodule of a flat module is flat;

4. Tor2R(R/IR, N) = 0 for all IR ◁ R right ideals andN ∈ R-Mod;

5. Every right ideal IR ◁ R is a flatR-module.

Remark9.95 Recall thatwe have the following implications: choose a ringR, and anR-module
M , then

• M free =⇒ M projective;

• M projective =⇒ M flat;

• filtered direct limits of projective modules are flat;

• direct limits of finitely generated free modules are flat;

• in general, it is not true that any flat module is projective.

We nowwant to show that, in the particular case whereM is finitely presented, then it is project-
ive as soon as it is flat.

Definition 9.96: Finitely presented module.
Recall thatM ∈ R-Mod is finitely presented iff there is a short exact sequence

0 K Rn M 0,

with n ∈ N andK a finitely generatedR-module.

Lemma 9.97. LetMR be a finitely presented module and consider the short exact sequence

0 H P M 0,

with P projective and finitely generated. ThenH is finitely generated.

Remark 9.98 The above implies thatMR is finitely presented iff there is an exact sequence

Rm Rn M 0,

for somem,n ∈ N.
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Remark 9.99: Pano’s guess.
I guess that any finitely generated projectiveR-module P is also finitely presented. Let’s, in fact,
give a presentation ofM :

0 K Rn M 0.

By projectivity ofM it splits. ThenK is a direct summand of a free module, hence it is finitely
generated.

Remark 9.100 Fix a pair of right R-modulesMR, NR ∈ Mod-R, then the character module
HomZ (N,Q/Z) = (NR)

∗ ∈ R-Mod is a leftR-module. Moreover there exists a morphism in
Ab

σM,N : M ⊗N∗ [HomR (M,N)]
∗
= HomZ (HomR (M,N) ,Q/Z)

x⊗ f g,

where g acts as follows on α ∈ HomR (M,N)

g(α) := f (α(x)) . (9.100)

Lemma 9.101. Let MR be a finitely presented R-module, then σM,N , as defined above, is an iso-
morphism for allN ∈ Mod-R.

Theorem 9.102. A finitely presented flat moduleMR is projective.

9.6 Change of rings
Tor under change of rings

LetR,S be rings, and f : R→ S a ring homomorphism. Then S is anR-R bimodule via f and
every S-module is an R-module via restriction of scalars. Moreover, given anyMR ∈ Mod-R,
thenMR ⊗R S is a right S-module via extension of scalars.

Proposition 9.103. Let f : R→ S be a ring homomorphism. Assume that RS is a flat leftR-module.
Then, for allMR ∈ Mod-R, all n ∈ N and SC ∈ S-Mod (hence SC ∈ R-Mod), we have

TorRn (MR, SC) ≃ TorSn(M ⊗R S, SC). (9.101)

Proposition 9.104. Let f : R→ S be a ring homomorphism. Assume that RS is a flat leftR-module.
Then, for allMR ∈ Mod-R, CS ∈ Mod-S and n ∈ N, we have

ExtnR(M,C) ≃ ExtnS(M ⊗R S,C). (9.102)

Proposition 9.105. Let R,S be commutative rings, and f : R → S a ring homomorphism. Assume
that S is a flatR-module. Then for all modulesM andN , and n ∈ N, we have

TorRn (M,N)⊗R S ≃ TorSn(M ⊗R S,N ⊗R S). (9.103)

Corollary 9.106. Let R be a commutative ring,M andN be R-modules and n ∈ N. The following
are equivalent:

1. TorRn (M,N) = 0;

2. TorRp
n (Mp, Np) = 0 for all p ∈ SpecR;

3. TorRm
n (Mm, Nm) for allm ∈ MaxSpecR.
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Hom and Ext with finitely presented modules

LetR,S be commutative rings, φ : R → S be a ring homomorphism and S be a flatR-module
(e.g. T a multiplicatively closed subset ofR and S := RT = R[T−1]).

Proposition 9.107. Let R,S be commutative rings, φ : R → S be a ring homomorphism. Assume
thatS is a flatR-module and considerMR a finitely presentedR-module. Then, for anyN ∈ Mod-R,

HomS (M ⊗R S,N ⊗R S) ≃ HomR (M,N)⊗R S. (9.104)

Let’s now extend this result for the Ext functor:

Definition 9.108 We denote bymod-R (using the lowercase m to differentiate from the bigger
category) the category of right R-modulesM with a projective resolution of finitely generated
projective modules (i.e. all the syzygysΩn(M) are finitely generated: at each point the kernel [i.e.
the syzygy] is an epimorphic image of a finitely generated module).

Remark 9.109 IfR is a rightNoetherian ring, then the objects ofmod-R are exactly the finitely
generatedR-modules.

Definition 9.110: Right coherent ring.
A ring R is right coherent iff every finitely generated right ideal is also finitely presented. Equi-
valently iff every finitely generated submodule of a finitely presented right R-module is finitely
presented.

Remark 9.111 LetR be right coherent, thenmod-R is the category of finitely presented right
R-modules.

Proposition 9.112. LetR,S be commutative rings andφ : R→ S be a ring homomorphism. Assume
that S is a flatR-module and considerM ∈ mod-R andN ∈ Mod-R. Then, for all n ∈ N,

ExtnS (M ⊗R S,N ⊗R S) ≃ ExtnR (M,N)⊗R S. (9.105)

Corollary 9.113. Let R be a commutative ring, MR ∈ mod-R, N ∈ Mod-R and n ∈ N. The
following are equivalent:

1. ExtnR = 0;

2. ExtnRp
(Mp, Np) = 0 for all p ∈ SpecR;

3. ExtnRm
(Mm, Nm) = 0 for allm ∈ MaxSpecR.

9.7 Homological formulas relating Ext and Hom
Proposition 9.114. Consider R and S rings. Let RNS be an S-R bimodule andMR ∈ Mod-R.
Consider CS an injective right S-module. Then, for all n ≥ 0,

ExtnR (MR,HomS (NS , CS)R) ≃ HomS

(
TorRn (M,N)S , CS

)
. (9.106)

In particular, if we pick S := Z and C := Q/Z, we obtain, for all n ∈≥ 0

ExtnR (MR, N
∗) ≃

[
TorRn (M,N)

]∗
. (9.107)
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Proposition 9.115. Consider R,S rings. Let RNS be an S-R bimodule andMR ∈ mod-R. Con-
sider SC an injective left S-module. Then, for all n ≥ 0,

TorRn (MR,HomS (SNR, SC)) ≃ HomS (Ext
n
R (MR, SNR) , SC) . (9.108)

In particular, if S := Z and C := Q/Z, then

TorRn (M,N∗) ≃ [ExtnR (M,N)]
∗
. (9.109)

Example LetMR be a right R-module, RGS an R-S bimodule and CS a right S-module. As-
sume thatTorR1 (M,G) = 0, then there is a monomorphism (of abelian groups)

Ext1R (MR,HomS (RGS , CS)) Ext1S (M ⊗R G,CS) .

10 Yoneda extension
Our next aim is, given an abelian category A and objectsA,B ∈ Ob (A), to define ExtA (A,B)
even though Amight not have enough injectives nor projectives.

Definition 10.1: Extension.
Let A be an abelian category,A,B ∈ Ob (A). An extension ofA byB is a short exact sequence

ζ := 0 B X A 0.

We say that two extensions ζ and ζ ′ are equivalent, denoted by ζ ∼ ζ ′, iff there is a commutative
diagram as below

ζ : 0 B X A 0

ζ ′ : 0 B X ′ A 0.

∼ (10.1)

Notice that, by the five lemma, in any such diagram the middle vertical arrow is an isomorphism.

Remark 10.2: Split extensions.
Recall the characterization of splitting short exact sequences: an extension

ζ := 0 B X A 0
µ p

splits iff it is equivalent to the following extension ofA byB:

0 B A⊕B A 0.
ϵB πA

Equivalently iff there is f : X → B s.t. f ◦ µ = 1B , iff there is g : A→ X s.t. p ◦ g = 1A.

Remark 10.3: Class of extensions and Ext.
Denote byE(A,B) the class of all extensions ofA byB. If we denote by∼ the above equivalence
relation and we can define Ext1A (A,B) (i.e. if A has enough injectives of projectives), then we
want to construct an isomorphism θ of abelian groups

Ext1A (A,B) ≃θ
E(A,B)

∼
. (10.2)
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Let’s define θ. FixA,B ∈ Ob (A) and consider an extension ofA byB

ζ := 0 B X A 0.

Assume thatExtnA (−, B) exist, forming a cohomological ∂-functor (e.g. ifA has enough project-
ives). ApplyHomA (−, B) to ζ and obtain

0 HomA (A,B) HomA (X,B) HomA (B,B) Ext1A (A,B) .∂

Finally we define θ(ζ) := ∂(1B) ∈ Ext1A (A,B).
Lemma 10.4. Fixed a category A and objects A,B of A as before, if ζ ∼ ζ ′ ∈ E(A,B), then
θ(ζ) = θ(ζ ′). In other words θ : E(A,B)→ Ext1A (A,B) induces a map on the quotient E(A,B)

∼ .

Theorem 10.5. Given A, A,B as before, θ gives a bijective correspondence

E(A,B)
∼ Ext1A (A,B)θ . (10.3)

Lemma 10.6. Let A be an abelian category. Consider a commutative diagram

0 K M A 0

0 B Y A 0

ν

β h
g , (10.4)

with exact rows and where the leftmost square is a pushout. Then there is g : M → B s.t. g ◦ ν = β iff
the second row splits.

Lemma 10.7. Let A, A,B be as before, thenExt1A (A,B) = 0 (as abelian groups) iff every extension
ofA byB splits.

Remark 10.8 Consider ζ ∈ E(A,B), then γ ∈ HomA (A′, A) gives ζγ ∈ E(A′, B)

ζγ : 0 B X ′ A′ 0

ζ : 0 B X A 0

γ , (10.5)

whereX ′ is a pullback of the diagram

A′

X A

π . (10.6)

Analogously β ∈ HomA (B,B
′) gives βζ ∈ E(A,B′):

ζ : 0 B X A 0

βζ : 0 B′ X ′ A 0

β , (10.7)

whereX ′ is a pushout of the diagram

B X

B′

p . (10.8)
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Remark 10.9 InMod-R (hence in any abelian category by Freyd-Mitchell), in any diagram like

0 B X ′ A′ 0

0 B X A 0

γ (10.9)

the right square is a pullback, so that pullbacks of short exact sequences are the only diagrams of
this form. Analogously in any diagram of the form

0 B X A 0

0 B′ X ′ A 0

β (10.10)

the left square is a pushout.

Definition 10.10: Baer sum in E(A,B)/ ∼.
Consider A, A,B as before. Let [ζ] , [ζ ′] be the equivalence classes of ζ, ζ ′ ∈ E(A,B) with
respect to∼:

ζ := 0 B X A 0i π and ζ ′ := 0 B X ′ A 0.i′ π′

Now consider the extension ofA⊕A byB ⊕B, given by the direct sum

ζ ⊕ ζ ′ := 0 B ⊕B X ⊕X ′ A⊕A 0.
i⊕i′ π⊕π′

Let moreover∆A : A→ A⊕ A be the diagonal map, i.e. ∆A =

[
1A
1A

]
, and∇B : B → B ⊕ B

the codiagonal map, i.e.∇B =
[
1B 1B

]
. By the above remark we can construct

∇B (ζ ⊕ ζ ′)∆A : 0 B Z A 0

(ζ ⊕ ζ ′)∆A : 0 B ⊕B Y A 0

ζ ⊕ ζ ′ : 0 B ⊕B X ⊕X ′ A⊕A 0

∇B

∆A

.

Finally we define [ζ] + [ζ ′] := [∇B (ζ ⊕ ζ ′)∆A]. We can also see that this definition is inde-
pendent of the choice of representatives.

Proposition 10.11. E(A,B)/ ∼ endowed with the Baer sum (i.e. the sum we just defined) is an
abelian group. Moreover the map

θ : E(A,B)
∼ Ext1A (A,B)

is a group homomorphism.

By this proposition, one can also defineExt1R to beE(A,B)/ ∼, and this definition does not
require the abelian category A to have enough injectives or projectives.

Analogously this construction can be carried out for every n ∈ N:
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Definition 10.12: n extension.
Let A be an abelian category, A,B ∈ Ob (A). An n extension of A by B, denoted by ζ ∈
En(A,B), is an exact sequence

ζ := 0 B Xn Xn−1 . . . X1 A 0.

We say that two extensions ζ and ζ ′ are equivalent, denoted by ζ ∼ ζ ′, iff there is a commutative
diagram s.t. the nontrivial vertical arrows are all isomorphisms

ζ : 0 B Xn Xn−1 . . . X1 A 0

ζ ′ : 0 B X ′
n X ′

n−1 . . . X ′
1 A 0

fn fn−1 f1 .

And, as expected, it gives the desired result:

Proposition 10.13. For every n ∈ N, if ExtnA (A,B) is defined in A abelian, we have the following
isomorphism of abelian groups

En(A,B)

∼
≃ ExtnA (A,B) . (10.11)

87


	Preliminaries
	Category theory
	Categories and morphisms
	Functors
	Yoneda lemma
	Kernel and Cokernel
	Product and Coproduct
	Infinite product and coproduct

	Abelian categories
	Pullback and Pushout
	Exact categories

	(Co)limits
	The functor projective lim
	Characterization of projective limit
	Colimits
	Direct limit of modules

	Exactness
	Subobjects and quotients
	Functors

	Injective and projective objects
	Functor categories
	Grothendieck categories

	Adjoint functors
	Chain and cochain complexes
	Homotopy category
	Snake lemma and applications
	Operations on complexes

	Derived functors
	Resolutions
	Left derived functors
	Right derived functors
	Derived functors of contravariant functors
	Derived functors of tensor product functors
	Change of rings
	Homological formulas relating Ext and Hom

	Yoneda extension

